Length-scalable discharge plasma source for AWAKE

Nuno Torrado^{1,2}, C. Amoedo², A. Sublet², F. Silva³, N. Lopes¹

GoLP/IPFN, IST, Lisbon, Portugal
 CERN, Geneva, Switzerland
 INESC-ID, IST, Lisbon, Portugal

CERN/FIS-TEC/0017/2019 CERN/FIS-TEC/0034/2021 PRT/BD/152341/2021

AWAKE: Advanced proton-driven plasma **WAKE**field acceleration

Wakefield acceleration: driver creates a wakefield in a plasma where electrons can be accelerated

AWAKE use high energy drivers – CERN SPS proton bunch 400 GeV/c: hundreds of GeV of energy gain

SPS proton bunch lengths is ~6 cm – larger than the plasma wavelength (~1.2 nm or $n_e \approx 7 \times 10^{14} \text{ cm}^{-3}$)

Self-modulation instability (SMI) modulates the proton bunch into micro-bunches spaced ~plasma wavelength

Milestones achieved by AWAKE so far

- Successful self-modulation (2017)
- First electron acceleration (2018)
- Seeded self-modulation (2021)

 λ_p

AWAKE: Advanced proton-driven plasma **WAKE**field acceleration

Self-modulation instability (SMI) modulates the proton bunch into micro-bunches spaced ~plasma wavelength

Milestones achieved by AWAKE so far

- Successful self-modulation (2017)
- First electron acceleration (2018)
- Seeded self-modulation (2021)

AWAKE: Advanced proton-driven plasma **WAKE**field acceleration

Next steps

- Two sources *modulator* + *accelerator* to allow external electron bunch injection
- **Scalable plasma source** to extend acceleration length

Requirements scalable plasma source

- Plasma electron density 1-10x10¹⁴ cm⁻³ _
- Reproducibility
- Longitudinal uniformity: 0.25% over 10 m
- Length-scalable: 10-100 m

Length Scalable Plasma Sources

Possible solution: **Discharge Plasma Source**

- Current density 1000 A/mm²
- Fast plasma ignition (1-2 μs) and current reproducibility (<1%)
- Long plasma sections (10 m) and series assembly with common electrodes

Requirements scalable plasma source

- Plasma electron density 1-10x10¹⁴ cm⁻³
- Reproducibility
- Longitudinal uniformity: 0.25% over 10 m
- Length-scalable: 10-100 m

Discharge Plasma Source (DPS) Challenges

- AWAKE densities and the uniformity targets demand high current plasma – around 500 A
- 10 m plasma lengths and μs-fast ignition demands over
 20 kV voltage pulse
- Combining a single pulse with about 20 kV and 500 A results in 10 MW of power

→ Double-pulse solution:
 High-voltage ignition pulse
 High-current heater pulse

Discharge Plasma Source (DPS) Challenges

- AWAKE densities and the uniformity targets demand high current plasma around 500 A
- 10 m plasma lengths and μs-fast ignition demands over
 20 kV voltage pulse
- Combining a single pulse with about 20 kV and 500 A results in 10 MW of power

Discharge Plasma Source (DPS) Challenges

- AWAKE densities and the uniformity targets demand high current plasma – around 500 A
- 10 m plasma lengths and µs-fast ignition demands over -20 kV voltage pulse
- Combining a single pulse with about 20 kV and 500 A results in 10 MW of power

Discharge Plasma Source (DPS)

Double Pulse Generator

Discharge Plasma Source (DPS) Density diagnostics

Michelson interferometer M1 reference arm M2 M3 He:Ne

Measurement arm (plasma) adds a phase shift ϕ_i proportional to the plasma density n_e

$$\phi_i(t) = \frac{1}{r_e \lambda_i} \int n_e(t) dx$$

Time-evolution of the plasma density, line integrated over the 10 m

Discharge Plasma Source (DPS)

Length scalable plasmas

Length scalability obtained by connecting multiple plasma sections with common electrodes

Coupled inductors force current symmetry between the electrodes of each section

Discharge Plasma Source (DPS) DPS in the AWAKE

Diagnostics showed that the DPS was technologically ready for installation

Operated for three weeks with proton beams in AWAKE (May 2023)

A chance to test an alternative plasma source and profit from its operation range

Discharge Plasma Source (DPS)

DPS in the AWAKE

Self Modulation Instability (SMI) signature – demonstration of the applicability of DPS in AWAKE

C. Amoedo, in preparation

Discharge Plasma Source (DPS) DPS in the AWAKE

DPS operation range allowed a variety of plasma wakefield physics' studies

Conclusion

The Discharge Plasma Source:

is a novel plasma source based on electric gas discharges generates uniform plasmas from µs-pulse high-voltage and high-current discharges single plasmas have been studied successfully with 10 m set-ups scalability can be achieved by connecting plasma sections in series

