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Space Rider
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Space Reusable Integrated 
Demonstrator for Europe Return

 

▪ The Space Rider (SR) is ESA’s new reusable shuttle 

that will be launched by the Vega-C rocket from Kourou 

in Q4 2026.

▪ Each flight will have a duration of 2 months allowing 

up to 600 kg of payloads to perform their missions in 

LEO conditions (400 km altitude; Orbital Period ～90 

min; 5º inclination).
Figure 1. SR orbit for the maiden flight. 400 km, 5o inclination. REF: SPENVIS



THOR-SR Mission
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TGF and High-energy astrophysics Observatory for gamma-
Rays on-board Space Rider

▪ Developed by the iAstro group at LIP-Coimbra.
▪ Scientific payload to map the light (electron) and heavy (proton, ions) charged 

particle components in terms of particle species, deposited energy, and 

direction:

▪  CdTe Stack Detector (16 sensors) – observation of gamma-ray sources

▪  Si Particle Tracker (2 sensors) – particle telescope for SW and a high-

resolution radiation monitor for radiation effects

THOR-SR's two-month space mission addresses three different objectives:

1) Space Orbital Radiation and SW Monitoring

2) Radiation Effects Monitoring

3) Technology Demonstration

Figure 2. Particle detectors geometry alongside THOR Gamma Tracker 
Array, in an orthogonal array in order to cover with a full wide field-of-
view, spectral, and directional tracking resolving power the complex 

and variable space radiation along the orbit of the SR mission.



My PhD Work

▪ Data selection process for a machine learning algorithm 

that enhances the data analysis and interpretation

▪ Simulating the performance of the detector using GEANT4 

software to predict what the detector will observe during 

flight.

▪ Work directly with the flight data:
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Figure 3. Example of data fed into the machine learning 
algorithm.
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Space Radiation in LEO:

1) Galactic Cosmic Rays (GCRs): High-energy particles from outside 

our solar system.

2) Solar Energetic Particles (SEPs): High-energy particles released 

during solar events like flares and coronal mass ejections.

3) Trapped Radiation: Particles that are caught in Earth’s magnetic 

field, forming the Van Allen radiation belts.

Space Weather Phenomena:

▪ How space weather events (solar flares, geomagnetic storms, and 

CMEs) can rapidly increase radiation levels, sometimes posing 

immediate risks.



My Timeline

2024
• Scientific Objectives 

Consolidation
• Particle Tracker 

Performance Simulation
• Implementation, 

Integration & Test

2026
• Space Rider Mission

• Pre-Flight Operations
• Launch
• Orbital and Solar 

particle 
measurements

2027
• Post-Flight Tests and 

Data Analysis
• Thesis Writing
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Thank you!
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Conclusion

• My research, as part of the THOR-SR project, focuses on 
understanding the space radiation environment in Low Earth Orbit 
and how space weather influences it. 

• This work is vital for improving spacecraft design, protecting 
astronauts, and ensuring the success of future space missions.
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