

TGF and High energy astrophysics Observatory for gamma Rays

Space Radiation in Low Earth Orbit and Space Weather on Board the Space Rider

<u>C. Francisco</u>^{1,2,3}, R. M. Curado da Silva³, F. Pinheiro², J. Maia^{3,4}, J. Sousa^{1,3}, G. Falcão⁵, A. Trindade^{1,3}, P. Póvoa^{1,3}, P. Carmo^{1,3}, A. Neves^{1,3}, J. Gonçalves^{3, 5}, J. Campos⁶, M. Ferreira⁶

¹Physics Department of the University of Coimbra, Portugal ²Centre for Earth and Space Research of the University of Coimbra (CITEUC), Portugal ³Laboratory of Instrumentation and Experimental Particle Physics (LIP), Portugal ⁴Physics Department of the University of Beira Interior, Covilhã, Portugal ⁵Electrical Engineering Department of the University of Coimbra, Portugal ⁶Computer Engineering Department of the University of Coimbra, Portugal

8th LIP/IDPASC PhD Students Workshop Oct. 17 2024

Space Rider

Space Reusable Integrated **D**emonstrator for **E**urope **R**eturn

The Space Rider (SR) is ESA's new reusable shuttle that will be launched by the Vega-C rocket from Kourou in Q4 2026.

 Each flight will have a duration of 2 months allowing up to 600 kg of payloads to perform their missions in LEO conditions (400 km altitude; Orbital Period ~90 min; 5° inclination).

Figure 1. SR orbit for the maiden flight. 400 km, 5° inclination. REF: SPENVIS

THOR-SR Mission

TGF and High-energy astrophysics Observatory for gamma-Rays on-board Space Rider

- Developed by the iAstro group at LIP-Coimbra.
- Scientific payload to map the light (electron) and heavy (proton, ions) charged particle components in terms of particle species, deposited energy, and direction:
 - CdTe Stack Detector (16 sensors) observation of gamma-ray sources
 - Si Particle Tracker (2 sensors) particle telescope for SW and a highresolution radiation monitor for radiation effects

THOR-SR's two-month space mission addresses three different objectives:

- 1) Space Orbital Radiation and SW Monitoring
- 2) Radiation Effects Monitoring
- 3) Technology Demonstration

Figure 2. Particle detectors geometry alongside THOR Gamma Tracker Array, in an orthogonal array in order to cover with a full wide field-ofview, spectral, and directional tracking resolving power the complex and variable space radiation along the orbit of the SR mission.

My PhD Work

- Data selection process for a machine learning algorithm that enhances the data analysis and interpretation
- Simulating the performance of the detector using GEANT4 software to predict what the detector will observe during flight.
- Work directly with the flight data:

Connecting the observations to Space Weather indicators and parameters

More detailed understanding of the radiation environment in LEO

Figure 3. Example of data fed into the machine learning algorithm.

My PhD Work

Space Radiation in LEO:

- **1)** Galactic Cosmic Rays (GCRs): High-energy particles from outside our solar system.
- 2) Solar Energetic Particles (SEPs): High-energy particles released during solar events like flares and coronal mass ejections.
- **3) Trapped Radiation**: Particles that are caught in Earth's magnetic field, forming the Van Allen radiation belts.

Space Weather Phenomena:

 How space weather events (solar flares, geomagnetic storms, and CMEs) can rapidly increase radiation levels, sometimes posing immediate risks.

My Timeline

2024

- Scientific Objectives Consolidation
- Particle Tracker
 Performance Simulation
- Implementation, Integration & Test

2026

- Space Rider Mission
 - Pre-Flight Operations
 - Launch
 - Orbital and Solar particle measurements

2027

- Post-Flight Tests and Data Analysis
- Thesis Writing

Thank you!

References

[1] S. Bourdarie and M. Xapsos, IEEE Transactions on Nuclear Science, vol. 55, no. 4, pp. 1810-1832, 2008. Rmiss

- [2] H. Koshiishi, Advances in Space Research, Volume 53, Issue 2, 2014.
- [3] K Kudela 2013 J. Phys.: Conf. Ser. 409 012017
- [4] Vainio et al., Space Sci Rev 147, 187–231 (2009)
- [5] Reeves et al., Science, 2013, Vol 341, Issue 6149 pp. 991-994
- [6] Millan et al., Space Sci Rev 173, 103–131 (2012)
- [7] Ginet, et al. (2013), Space Sci. Rev. 179, 579–615.
- [8] G.Mariatos et al.. (2012) International Journal of Modern Physics A. 20.
- [9] Vampola, A. L., IEEE Trans. Plasma Sci., Vol. 28, No. 6, pp. 1831-1839, 2000.
- [10] R. Ecoffet, IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 1791-1815, 2013
- [11] Shin and Kim, Radiation protection dosimetry 108 4 (2004): 279-91.
- [12] Alberto Fedeleet al., Acta Astronautica, Volume 152, 2018, Pages 534-541.
- [13] W.S. Wong et al., Radiation Measurements, Vol. 131, 2020, 106230.
- [14] St. Gohl et al 2016 JINST 11 C11023
- [15] R. M. Curado da Silva, J. Maia, J. Sousa, THOR-SR ESA Interface Requirements' Document: https://www.lip.pt/~rcsilva/THOR_T_IRD_003%2020230309.pdf
- [16] C. Granja et al 2022 JINST 17 C11014

Acknowledgments

This work is supported by Portugal Space (PT Space) through the PRODEX Experiment Arrangement No. 4000141332, and by Fundação para a Ciência e a Tecnologia (FCT) through the research grant UI/BD/154752/2023 within the CITEUC's project *UIDB/00611/2020 and UIDP/00611/2020*.

- My research, as part of the THOR-SR project, focuses on understanding the space radiation environment in Low Earth Orbit and how space weather influences it.
- This work is vital for improving spacecraft design, protecting astronauts, and ensuring the success of future space missions.