

Universidade do Minho

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Searching for dark matter with the ATLAS detector using unconventional signatures

Maura Barros

Supervised by: Nuno Castro, Miguel Romão, Marek Taševský

LIP and IDPASC 8th PhD Student Workshop

17/10/2024

AFP

►

►

The ATLAS Forward Proton Detector

Located at ~210 m from the IP

Silicon Tracker (SiT): Proton tracks reconstruction

Time-of-Flight (ToF): Calculate if protons come from a common vertex \Rightarrow Check if it is consistent with primary vertex

Channel Signature

- **Elastic** production of V+X
- V decays into leptons: it can be a SM or BSM particle
- X is a **generic** particle: there is no need to infer its properties
- Model independent search
- AFP information is used for the **missing mass method**
- Takes into consideration the **visible particle** properties

AFP V+X Event Selection

• So far this analysis has used real p-p collisions **data collected in 2017** at $\sqrt{s} = 13$ TeV (Periods C, E, F, H, I, K)

- Corresponds to $\sim 44~{\rm fb}^{-1}$ of raw data, $14.6~{\rm fb}^{-1}$ after the AFP Good Run List (GRL) is applied

GRL (afp_grl_2017)		
HLT_mu26_ivarmedium OR HLT_2mu14	HLT_e26_ltight_nod0_ivarloose OR	
	HLT_e60_lhmedium_nod0 OR	
	HLT_e140_lhloose_nod0 OR	
	HLR_2e17_lhvloose_nod0_L12EM15VHI	
	OR HLT_2e24_lhvloose_nod0	
At least 2 muons passing:	At least 2 electrons passing:	
 Opposite sign 	 Opposite sign 	
 Muon selection: Medium 	 Electron selection: LooseAndBLayer 	
 Muon isolation: WP Loose 	 Electron isolation: Loose_VarRad 	
• $p_T(l_1, l_2) > 15 \text{GeV}$	• $p_T(l_1, l_2) > 18 \text{ GeV}$	
$ \eta(l_1, l_2) < 2.4$	• $ \eta(l_1, l_2) < 2.47$	
Exactly 1 proton per AFP side		

AFP V+X MC Background vs Data

Background estimation: hybrid method

AFP V+X MC Background vs Data

Background estimation: hybrid method

| AFP V+X | MC Background vs Data

Background estimation: hybrid method

| AFP V+X | MC Background vs Data

Background estimation: hybrid method

AFP V+X MC Background vs Data

Background estimation: hybrid method

• The analysis strategy does not require any signal model choice. However, for results interpretation a specific signal should be chosen

$$\xi = 1 - \frac{E_p}{E_{beam}} \qquad M_{pp} = \sqrt{s\xi_1\xi_2}$$

• The analysis strategy does not require any signal model choice. However, for results interpretation a specific

signal should be chosen

• The analysis strategy does not require any signal model choice. However, for results interpretation a specific signal should be chosen

$$\xi = 1 - \frac{E_p}{E_{beam}} \qquad M_{pp} = \sqrt{s\xi_1\xi_2}$$

The analysis strategy does not require any signal model choice. However, for results interpretation a specific
 Short-lived ALP
 that decays
 into leptons

• The analysis strategy does not require any signal model choice. However, for results interpretation a specific signal should be chosen

$$\xi = 1 - \frac{E_p}{E_{beam}} \qquad M_{pp} = \sqrt{s\xi_1\xi_2}$$

• The analysis strategy does not require any signal model choice. However, for results interpretation a specific

signal should be chosen

Summary Next Steps

V+X analysis using double-tag AFP events:

- Chain for the ntuple production, selection and plotting is ready
- Full signal MC already generated with ATLAS official production
- Next steps:
 - Working on TRexFitter configuration file for the limit calculation
 - Finalise the analysis and have it approved in ATLAS
 - Finish the writing of the thesis

Thank you!

This work is supported by FCT under the grant SFRH/BD/151006/2021

Data-driven Estimate

- Event shifting of i = 2, 3, ..., N is used to estimate the background. E.g. event 1 will be mixed with protons from event 3
- Multiple orthogonal samples were used to improve statistics
 Real data i=0

Hybrid Method

Data-driven Estimate

- Event shifting of i = 2, 3, ..., N is used to estimate the background. E.g. event 1 will be mixed with protons from event 3
- Multiple orthogonal samples were used to improve statistics

Real data

Hybrid Method

Data-driven Estimate

- Event shifting of i = 2, 3, ..., N is used to estimate the background. E.g. event 1 will be mixed with protons from event 3
- Multiple orthogonal samples were used to improve statistics

Real data

Hybrid Method

 Sherpa 2.2.11 Z+jets samples (recommended by PMG) overlayed with pile-up protons from data

Blinded data

Data-driven Estimate

- Event shifting of i = 2, 3, ..., N is used to estimate the background. E.g. event 1 will be mixed with protons from event 3
- Multiple orthogonal samples were used to improve statistics

Real data

Blinded data

Background estimation

N-1

Hybrid Method

Data-driven Estimate

- Event shifting of i = 2, 3, ..., N is used to estimate the background. E.g. event 1 will be mixed with protons from event 3
- Multiple orthogonal samples were used to improve statistics

Real data

Blinded data

Background estimation

N-1

Hybrid Method

Data-driven Estimate

- Event shifting of i = 2, 3, ..., N is used to estimate the background. E.g. event 1 will be mixed with protons from event 3
- Multiple orthogonal samples were used to improve statistics

Real data

th protons from overlayed with pile-up protons from data

Real data Overlay ATLAS central detector MC

Hybrid Method

Sherpa 2.2.11 Z+jets samples (recommended by PMG)

Data-driven Estimate

- Event shifting of i = 2, 3, ..., N is used to estimate the background. E.g. event 1 will be mixed with protons from event 3
- Multiple orthogonal samples were used to improve statistics

Real data

Background estimation

Hybrid Method

 The analysis strategy does not require any signal model choice. However, for results interpretation a specific signal should be chosen

• The analysis strategy does not require any signal model choice. However, for results interpretation a specific signal should be chosen

 The analysis strategy does not require any signal model choice. However, for results interpretation a specific signal should be chosen

 The analysis strategy does not require any signal model choice. However, for results interpretation a specific signal Short-lived ALP that decays into lentons

Short-lived ALP mass (GeV)	Long-lived ALP mass (GeV)	Couplings
10	800	1
91	200	1
	400	1
	800	1
	800	0.1
	1200	1
200	800	1

 The analysis strategy does not require any signal model choice. However, for results interpretation a specific signal should be chosen

 The analysis strategy does not require any signal model choice. However, for results interpretation a specific signal should be chosen

