
Accelerating the ATLAS 
Trigger System with 

Graphical Processing Units
8th IDPASC Student Workshop 

16/10/2024
Nuno dos Santos Fernandes



ATLAS & Trigger



• A Toroidal LHC Apparatus: one of the two general-purpose detectors at the LHC

• The ATLAS Trigger is used to filter the detected events to ensure a manageable
output rate
 Two stages:

o Hardware-based (Level 1/Level 0)
o Software-based (High-Level Trigger/Event Filter)

Nuno dos Santos Fernandes 3Accelerating the ATLAS Trigger System with Graphical Processing Units

ATLAS and its Trigger System

• The High-Luminosity LHC Upgrade will increase the luminosity,
making event reconstruction more computationally demanding

• The Phase II ATLAS upgrade needed for the High-Luminosity LHC
increases event rate at the software-based stage from 1 kHz to 10 kHz

• This higher computational load requires more computing power
and/or better optimization

• Alternative: hardware acceleration
 Ongoing studies for both FPGA and GPU acceleration Diagram of the ATLAS Trigger System

40 MHz

ATLAS 
Dectector

Storage

High
Level

Trigger

Event
Filter

1 kHz 10 kHz

“ Computer
Farm ”

Level 1 Level 0

100 kHz 1 MHz

Custom
Hardware

Phase I
(Present)

Phase II
(HL-LHC)



GPU Programming



• Graphical Processing Units

• Developed and designed to render 3D graphics

• Highly parallel operations → highly parallel design

• “SIMT”: Single Instruction – Multiple Threads

• Branching is problematic

• Memory access patterns must be carefully considered

GPUs and GPU Programming

Nuno dos Santos Fernandes 5Accelerating the ATLAS Trigger System with Graphical Processing Units



Calorimeter Clustering 
Algorithms



Topological Clustering

Nuno dos Santos Fernandes 7Accelerating the ATLAS Trigger System with Graphical Processing Units

• Topological Clustering is the currently used approach for calorimeter reconstruction in ATLAS
 Among the top 20th most computationally demanding algorithms within the ATLAS trigger

• Three main steps: cluster growing, cluster splitting, cluster moments calculation
• Clustering typically groups up several tens of calorimeter cells, some clusters may be significantly larger
• Several hundred to a few thousand clusters per event, depending on the physical process
• Significant dependence on the number of collisions per bunch crossing (μ) in terms of the execution time



Topo-Automaton Clustering

• Topological clustering is not accelerator-friendly: a 
different algorithmic approach is needed
 Tags express the cluster assignment of the cells
 Tag propagation rules to grow and split the clusters

• Formally equivalent to a cellular automaton, hence 
Topo-Automaton Clustering

• Fully implemented in the GPU using CUDA
• 100% agreement in cell assignment can be achieved 

between CPU and GPU, any reasons for differences if 
certain options are taken are fully understood

• Basic cluster properties (e. g.: energy, η, φ) yield 
similar values (within floating point accuracy)

• Some cluster moments have greater differences due to 
accumulated and compounded floating point errors

• The data structures used in the CPU part of the code 
cannot be used directly in the GPU, so we need to 
convert between the two representations

Nuno dos Santos Fernandes 8Accelerating the ATLAS Trigger System with Graphical Processing Units



Results



We currently achieve a speed-up of ~5.9 for di-jets, ~8.9 for tt, considering all data conversions and transfers.
The speed-up depends on the complexity of the event (number and size of the clusters), mostly due to CPU scaling.

Speed-up from GPU Acceleration in Relation to the CPU Implementation

Nuno dos Santos Fernandes 10Accelerating the ATLAS Trigger System with Graphical Processing Units

-



• Main bottleneck: converting the GPU data structures representing the clusters back to CPU-compatible structures

Breakdown of GPU Execution Times

Nuno dos Santos Fernandes 11Accelerating the ATLAS Trigger System with Graphical Processing Units



Summary and Future Efforts



Summary and Future Efforts

• Topo-Automaton Clustering fully implemented and working, for cluster growing, cluster splitting and cluster 
moments calculation, with configurability on a par with the CPU implementation (essentially, drop-in replacement)
 First completed prototype for ATLAS Phase II, well ahead of schedule

• A very significant speed-up was found (factor of ~5.9 for di-jet events, ~8.9 for denser tt events)
 A significant portion of the GPU event processing time (60~70%) is spent in data conversions

• A general solution to mitigate the data structure conversion overhead is under development (Marionette)
 Integration with the current implementation of Topo-Automaton Clustering to follow
 At least a factor of 2 improvement on the current speed-up seems feasible

• Lessons learned and experience gained from this development have fed back into general hardware acceleration-
related development within ATLAS and in particular the ATLAS Trigger
 Currently co-coordinator of HLT Calo, responsible for the calorimeter reconstruction in the High Level Trigger

• A final decision on using this approach in the ATLAS Trigger depends on a general technical assessment of the 
feasibility and/or performance of GPU-accelerated algorithms, being scheduled for next year
 The approach is also being considered for offline reconstruction on grid sites where GPUs are available

-

Nuno dos Santos Fernandes 13Accelerating the ATLAS Trigger System with Graphical Processing Units

https://gitlab.cern.ch/dossantn/edm-overhaul


Thank you for your attention!



Backup Slides



• A Toroidal LHC Apparatus

• One of the two general-purpose detectors at the LHC

• Three layers:

 Inner Detector

 Calorimeters

 Muon Spectrometers

• 108 electronic channels

Nuno dos Santos Fernandes 16Accelerating the ATLAS Trigger System with Graphical Processing Units

The ATLAS Experiment

 187652 calorimeter cells with multiple
gain paths to optimize resolution
versus dynamic range of operation



Conditions of the Benchmarking

• Samples correspond to two kinds of Monte-Carlo simulated events:

 tt events: 3000 events, 𝜇 = 80

 di-jet events: 10000 events, 𝜇 = 200

• Results were obtained on a remote server provided by the Brookhaven National Laboratory:
GPU is a Tesla P100, CPU is a Xeon E5-2695 v4

• Time measurements were based on a per-thread clock

 For a single thread, “any clock” would work

o The CPU – GPU comparison is a bit lopsided, though…

 For more threads, timing and speed-up are representative, but throughput is a best-case estimate

o Essentially, we are assuming everything is always running in parallel

 This is due to several limitations when trying to benchmark within the ATLAS software

-

Nuno dos Santos Fernandes 17Accelerating the ATLAS Trigger System with Graphical Processing Units



Breakdown of GPU Execution Times

Nuno dos Santos Fernandes 18Accelerating the ATLAS Trigger System with Graphical Processing Units



• Showers deposit their energy in a finite region of space:
a calorimeter cell

• Calorimeter cells organized in up to 28 different sampling layers

• Two main sources of noise: electronic read-out and pile-up

• The noise estimate is typically a function of the gain of the cell

• For the Tile calorimeter, the electronic noise can be estimated
by a two-Gaussian model, which involves more sophisticated
computations (inverse error function of error functions)

• Reconstruction of showers generated by outgoing particles in the calorimeters of the ATLAS experiment

Calorimeter Reconstruction Algorithms

Nuno dos Santos Fernandes 19Accelerating the ATLAS Trigger System with Graphical Processing Units



• Two main algorithmic stages:
 Cluster growing: iteratively assign cells to clusters based on the SNR (classify cells as seed, growing or

terminal, clusters grow out from the seeds to their neighbouring cells in an order defined by the SNR of the seed,
clusters are merged if they touch through growing cells)

 Cluster splitting: split the clusters around local maxima of the energy to distinguish different objects travelling
in the same direction (identify local maxima, exclude maxima from certain regions of the detector that overlap in
certain directions to favour layers with greater radiation depth, start growing the clusters to neighbouring cells in
an order defined by the energy of the cells, cells that can belong to more than one maximum are shared, shared
cells grow clusters only in the end and are weighted based on the energy and distance to the centroid)

Topological Clustering

Nuno dos Santos Fernandes 20Accelerating the ATLAS Trigger System with Graphical Processing Units



Limitations of Topological Clustering

Nuno dos Santos Fernandes 21Accelerating the ATLAS Trigger System with Graphical Processing Units

• Resizing a container is difficult to do in parallel, and it goes against the memory model of both GPUs and FPGAs

• Topological Clustering involves keeping track of multiple lists1 of cells, especially for cluster splitting

• The clusters themselves are also expressed as lists1 which must be resized as we add and remove cells

• For a more parallel-friendly implementation, we can instead mark the cells that belong to each cluster with a “tag”

 By constructing these tags appropriately, the sorting steps can be skipped entirely: floating point numbers
that follow the IEEE-754 standard can be put in a “total ordering” where the bit patterns, interpreted as
integers, are ordered in the same way as the original floating point numbers

 By defining a set of rules for how these tags are propagated from a cell to its neighbours, one can replicate the
entire behaviour of the iterative parts of cluster growing and cluster splitting while only considering each pair
of neighbours independently from each other (potentially in parallel, as long as tag updates are thread-safe)

• Since we have both a state for each cell and can specify the rules for how that state changes based on the
neighbourhood, this is equivalent to a cellular automaton, hence Topo-Automaton Clustering

1 – “List” is used here in the sense of an ordered collection of items; specifically, they correspond to dynamically allocated arrays, or “vectors” in C++.



Topo-Automaton Clustering

Nuno dos Santos Fernandes 22Accelerating the ATLAS Trigger System with Graphical Processing Units

• Cluster tags are 64-bit integers with specific structure:

• The tags are propagated through pairs of neighbouring cells satisfying the conditions for clusters to expand

 We handle each pair of cells in parallel, using appropriate atomic operations when needed

• Additional logic (e. g. keeping a cell to cluster index table) reduces the number of iterations

• All necessary temporary information stored in the same block of memory meant to hold the cluster moments
(calculated only at the end), everything can be pre-allocated

 Total per event memory footprint is ~80 MB

 Cell geometry and neighbourhood relations also need to be stored: ~100 MB of constant information

Cluster growing tag structure Cluster splitting tag structure



Signal-to-noise ratio
in total ordering

High bit to distinguish valid tags from terminal and growing cells

12 bit counter (212 − 1 − #propagations)

Index of the seed cell

Assumptions:

• Less than 𝟐𝟏𝟔 = 𝟔𝟓𝟓𝟑𝟔 clusters

• Less than 𝟐𝟏𝟐 propagation steps

Flag for preventing merges through seed cells
(1 only in some edge cases with non-absolute value thresholds)

Topo-Automaton Cluster Growing – Anatomy of a Tag

Nuno dos Santos Fernandes 23Accelerating the ATLAS Trigger System with Graphical Processing Units



Cell energy
(all set for original clusters)

Primary maxima flag

12 bit counter (212 − 1 − #propagations)

Index of the cell (or cluster index for original clusters)

Assumptions:

• Less than 𝟐𝟏𝟔 = 𝟔𝟓𝟓𝟑𝟔 clusters

• Less than 𝟐𝟏𝟐 propagation steps

Non-shared cells flag

Topo-Automaton Cluster Splitting – Anatomy of a Tag

Nuno dos Santos Fernandes 24Accelerating the ATLAS Trigger System with Graphical Processing Units


