# Light clusters in hot nuclear matter: calibrating the interaction with heavy-ion collisions (arXiv:2407.02307 [nucl-th])

Tiago Custódio<sup>1</sup>, Alex Rebillard-Soulié<sup>2</sup>, Rémi Bougault<sup>2</sup>, Diégo Gruyer<sup>2</sup>, Francesca Gulminelli<sup>2</sup>, Tuhin Malik<sup>1</sup>, Helena Pais<sup>1</sup> and Constança Providência<sup>1</sup>

 $^{1}$ CFisUC, University of Coimbra  $^{2}$ LPC, Caen

## Motivation

- Light nuclei might be present in both Core-Collapse Supernova and Binary Neutron Star Mergers
- Their presence influences the dynamics of these astrophysical events
- Accounting for in-medium modifications to the light clusters is essential to determine their correct abundances



## Relativistic Nuclear Field Theory

• In Relativistic Mean-Field Theory, the interactions are mediated via the exchange of virtual mesons:

$$\sigma, \omega, \rho \tag{1}$$

## Relativistic Nuclear Field Theory

• In Relativistic Mean-Field Theory, the interactions are mediated via the exchange of virtual mesons:

$$\sigma, \omega, \rho$$
 (1)

• Light clusters  $(i = {}^{2}H, {}^{3}H, {}^{3}He, {}^{4}He)$  will have their own cluster-meson couplings:

$$g_{\sigma i} = x_s A_i g_{\sigma N} \tag{2}$$

## Relativistic Nuclear Field Theory

• In Relativistic Mean-Field Theory, the interactions are mediated via the exchange of virtual mesons:

$$\sigma, \omega, \rho$$
 (1)

• Light clusters  $(i = {}^{2}H, {}^{3}H, {}^{3}He, {}^{4}He)$  will have their own cluster-meson couplings:

$$g_{\sigma i} = x_s A_i g_{\sigma N} \tag{2}$$

•  $x_s(\rho, T)$  is a way of accounting for in-medium modification of the clusters self-energies

## **INDRA** Heavy-Ion Collisions

 $^{136,124}$ Xe+ $^{124,112}$ Sn (32MeV/nucleon)

•  $v_{surf}$  is the velocity of the emerging particle at the nuclear surface, prior to Coulomb acceleration

#### Projectile-target central collision



## **INDRA** Heavy-Ion Collisions

 $^{136,124}$ Xe+ $^{124,112}$ Sn (32MeV/nucleon)

- $v_{\text{surf}}$  is the velocity of the emerging particle at the nuclear surface, prior to Coulomb acceleration
- Associate a statistical ensemble to each  $v_{\text{surf}}$  with corresponding particle mass fractions (nucleons and light clusters)

#### Projectile-target central collision



## **INDRA Heavy-Ion Collisions**

 $^{136,124}$ Xe+ $^{124,112}$ Sn (32MeV/nucleon)

- $v_{\text{surf}}$  is the velocity of the emerging particle at the nuclear surface, prior to Coulomb acceleration
- Associate a statistical ensemble to each  $v_{\text{surf}}$  with corresponding particle mass fractions (nucleons and light clusters)
- $\bullet$  Perform a Bayesian inference of  $\rho, T, x_s$  using experimentally measured mass fractions

#### Projectile-target central collision



## Mass Fractions



### Calibrated Temperatures and Densities

- Temperature evolution similar to the ideal gas estimation
- Results compatible with a single density  $\sim 0.015 \text{ fm}^{-3}$ : chemical freeze-out density at the surface of the emitting source (?)



## Calibrated $x_s(T)$



- $x_s$  is temperature dependent
- $\bullet$  Interaction weakens with T
- $x_s(T)$  compatible for all four entrance channels

• Limited  $\rho$  range cannot provide information on possible  $x_s$ dependence on  $\rho$ 

| Parameter | Unit             | Median   | $1\sigma$     | $2\sigma$     |
|-----------|------------------|----------|---------------|---------------|
| a         | ${\rm MeV^{-2}}$ | -0.00203 | $\pm 0.00003$ | $\pm 0.00006$ |
| b         | ${\rm MeV^{-1}}$ | 0.01477  | $\pm 0.00047$ | $\pm 0.00093$ |
| c         |                  | 0.90560  | $\pm 0.0018$  | $\pm 0.00355$ |

Table: Parameter estimates a,b,c with 1,  $2\sigma$  uncertainties for the quadratic fit  $x_s=aT^2+bT+c$ 

## Consequences of $x_s(T)$ for light cluster abundances



• Above  $T \sim 8$  MeV abundances are systematically lower than the predictions of modified ideal gas

• Smaller  $x_s$  corresponds to weaker cluster- $\sigma$  coupling, resulting in less bound clusters and, consequently, smaller abundances



 $\bullet$  Previously, T and  $\rho$  were estimated considering an ideal gas of clusters



- $\bullet$  Previously, T and  $\rho$  were estimated considering an ideal gas of clusters
- In this work, a Bayesian inference was performed with a RMF model using mass fractions to determine temperature, density and cluster couplings

- $\bullet$  Previously, T and  $\rho$  were estimated considering an ideal gas of clusters
- In this work, a Bayesian inference was performed with a RMF model using mass fractions to determine temperature, density and cluster couplings
- T shows same increasing behaviour as before but the density turned out to be constant: chemical freeze-out (?)

- $\bullet$  Previously, T and  $\rho$  were estimated considering an ideal gas of clusters
- In this work, a Bayesian inference was performed with a RMF model using mass fractions to determine temperature, density and cluster couplings
- T shows same increasing behaviour as before but the density turned out to be constant: chemical freeze-out (?)
- $x_s$  shows a dependence on T, weakening the clusters binding and abundances