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e Light nuclei might be present in both Core-Collapse Supernova and
Binary Neutron Star Mergers

e Their presence influences the dynamics of these astrophysical events

e Accounting for in-medium modifications to the light clusters is
essential to determine their correct abundances
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e In Relativistic Mean-Field Theory, the interactions are mediated via
the exchange of virtual mesons:

oW, p (1)
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e Light clusters (i = 2H, 3H, *He, *He) will have their own
cluster-meson couplings:
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e In Relativistic Mean-Field Theory, the interactions are mediated via
the exchange of virtual mesons:

oW, p (1)

e Light clusters (i = 2H, 3H, *He, *He) will have their own
cluster-meson couplings:

9oi = TsAigonN (2)

e 24(p,T) is a way of accounting for in-medium modification of the
clusters self-energies
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INDRA Heavy-Ion Collisions
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INDRA Heavy-Ion Collisions

I 136,124 o 4 124,112G), (32MeV /nucleon) I

® Ugyf 1S the velocity of the emerging
particle at the nuclear surface, prior to
Coulomb acceleration

e Associate a statistical ensemble to each
Vsurf With corresponding particle mass
fractions (nucleons and light clusters)

e Perform a Bayesian inference of p, T, z
using experimentally measured mass frac-
tions
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e Temperature evolution similar to the ideal gas estimation

e Results compatible with a single density ~0.015 fm~3: chemical
freeze-out density at the surface of the emitting source (?)
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e 1 is temperature dependent
e Interaction weakens with T'

e 2,(T) compatible for all four
entrance channels

e Limited p range cannot provide
information on possible
dependence on p

Parameter  Unit Median lo 20
a MeV~2  —0.00203 +0.00003 =0.00006
b MeV~1  0.01477  £0.00047 +0.00093
c 0.90560  +0.0018  +0.00355

Table: Parameter estimates a, b, c with
1, 20 uncertainties for the quadratic fit
zs=al?4+bT +c¢
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Welusters
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e Above T' ~ 8 MeV abundances
are systematically lower than the
predictions of modified ideal gas

e Smaller x4 corresponds to weaker
cluster-o coupling, resulting in less
bound clusters and, consequently,
smaller abundances
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e Previously, T" and p were estimated considering an ideal gas of
clusters
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e Previously, T" and p were estimated considering an ideal gas of
clusters

e In this work, a Bayesian inference was performed with a RMF model
using mass fractions to determine temperature, density and cluster
couplings

e 1" shows same increasing behaviour as before but the density turned
out to be constant: chemical freeze-out (?)

e 1, shows a dependence on T, weakening the clusters binding and
abundances
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