An Integrated Framework for the Radiation Environment in Space, on Mars and on the Moon and its Implications for Human Space Flight

Bruna Lima October 2024 IDPASC

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

The Radiation Challenge in Space Exploration

- Space radiation is a significant threat to astronauts and electronic equipment.
- Mars has minimal magnetic protection compared to Earth and no protection at all in the case of the Moon.
- Cosmic rays and solar events pose health risks.

Figure 1: Cosmic radiation can be galactic and solar. The Earth's magnetosphere deflects cosmic rays and protects us from solar flares. (Image: L. Han/IAEA)

Why Is This Important Now?

Figure 2: Mars Sample Return overview infographic Credit ESA–K. Oldenburg

- Future human missions to Mars and the Moon are planned.
- Safe exploration requires accurate radiation risk assessment.
- Ensuring astronaut safety is critical for long-term space exploration.

Project Overview – The Solution

Real Mission Data Updated Mars
Model and
Build Lunar
Model

Integrated Simulation

Validation and Impact

Building on dMEREM

- Validate models using mission data from JUICE, BepiColombo, and others.
- Assess radiation risks for spacecraft, EVAs, and different astronaut profiles.
- Provide mission planners with reliable data for safer crewed missions.

Figure 3: Proton spectra reaching the Mars surface within the RAD field-of-view due to GCR-protons, helium, carbon and oxygen nuclei described with the GCR ISO-15 390 model, simulated with dMEREM using four different physics lists compared to RAD proton differential flux measurements of September 2017. (Credits: Validation of dMEREM, the Detailed Mars Energetic Radiation Environment Model, with RAD

Data from the Surface of Mars

Conclusion

Building a Safer Future for Space Exploration

- Unifying fragmented radiation data for better understanding and accessibility.
- Ensuring astronaut safety for long-duration missions.
- Supporting the next wave of human exploration on the Moon and Mars.

Figure 4: Juice NavCam view of the Moon

Credits: ESA/Juice/NavCam Acknowledgements: Airbus

Acknowledgments

Patrícia Gonçalves LIP/IST

Luísa Arruda LIP

Pedro Assis LIP/IST

Bernardo Tomé LIP/IST

Marco Pinto ESA

António P. Gomes LIP/IST

Francisca Santos LIP/IST

& Jorge Sampaio – LIP/FCUL, Miguel Ferreira – LIP (Technical Eng.)

An Integrated Framework for the Radiation Environment in Space, on Mars and on the Moon and its Implications for Human Space Flight

Bruna Lima October 2024 IDPASC

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Extra Slides

Galactic Cosmic Rays (GCR) and Solar Energetic Particles (SEP)

Credits: Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Earthsparticle-environment-dominated-by-galactic-cosmic-rays-and-solar-particles-and_fig3_318029811

Galactic Cosmic Rays (GCR) and Solar Energetic Particles (SEP)

Galactic Cosmic Rays (GCR):

- High-energy particles from outside the solar system
- Originate from supernovae and distant stars
- Composed of protons, heavy ions, and electrons
- Can penetrate deep into planetary atmospheres and affect radiation environments

Solar Energetic Particles (SEP):

- Emitted during solar flares and coronal mass ejections
- Consist mainly of protons, with some heavier ions and electrons
- More intense but localized compared to GCR
- Pose radiation risks to spacecraft, astronauts, and satellites in space

dMEREM

20 atmosphere layers

Regolith (adaptable)

300 km (default)

* If the Magnetic Field is on, the values and configuration are different

- ☐ Geometry Definition and Materials;
- ☐ Primary Particle Generation:
- □ Event Generation & Simulation:
- ☐ Physics Processes & Interactions:
- □ Sensitive Detectors & Scoring Mechanisms;
- ☐ Tracking & Data Collection:
- □ Output & Visualization.