

Real-Time Beam Monitoring Device For FLASH RT

Gonçalo Ribeiro

8th LIP/IDPASC Workshop, 17th October 2024, Braga, Portugal

Supervisors: Prof. Pedro Assis (LIP), Prof. Patrícia Gonçalves, (LIP), Dr. Maurizio Vretenar (CERN)

Introduction

- Radiotherapy represents nearly 50% of therapies prescribed for treating tumours.
- A novel technique: FLASH Radiotherapy
 - Uses high dose rates (> 40 Gy/s) to an increased sparing of healthy tissue.
- High dose rates poses several challenges:
 - Standard Dosimeters saturate.
 - Real-time feedback for machine needed.
 - What are the requirements of a beam monitoring device for FLASH?

Skin of pig 36-week post-RT - CONV (5 Gy/min) and FLASH (300 Gy/s), from Mazal, Alejandro, et al. "FLASH and minibeams in radiation therapy: the effect of microstructures on time and space and their potential application to protontherapy." The British Journal of Radiology 93.1107 (2020): 20190807.

Beam Monitoring for FLASH RT?

High Temporal Resolution

Absence of saturation effects

Key Characteristics

Minimal Impacts

Fast Feedback to Machine

Ducks?

Our approach

Thin Radiator (~mm) in

Beamline to Produce

Cherenkov Photons

Photodetector to detect

them and estimate no. of

beam particles

Provide **Machine**

Feedback using Fast

Electronics

Pursuing IP Protection with IST

Our approach

- Applies to charged particle beams: electrons, protons and heavy ions.
- Electron beam energies are ~ MeV scale: no constraints on refractive index!
- Aerogel can be used as radiator. ©

Our approach works for protons and heavy ions?

- To produce Cherenkov light, high refractive index materials are needed!
- Light is internally reflected: it is trapped inside the radiator...
- Our approach works for protons and heavy ions? With this set-up, no.

Our approach: protons and heavy ions adaptation

Conical Shape Radiator

• With this geometry, photons are not internally reflected – they can be detected!

Take advantage of Internal Reflection

 Use a photoacoplator to avoid the existence of a air gap between radiator and photodetector.

Requirement	Device Performance
High Temporal Resolution	
Absence of saturation effects	
Minimal Impacts	
Fast Feedback to Machine	

Requirement	Device Performance
High Temporal Resolution	~ns (Fast photodetector + electronics)
Absence of saturation effects	
Minimal Impacts	
Fast Feedback to Machine	

Requirement	Device Performance
High Temporal Resolution	~ns (Fast photodetector + electronics)
Absence of saturation effects	Linear response (Cherenkov photons vs beam particles)
Minimal Impacts	
Fast Feedback to Machine	

Requirement	Device Performance
High Temporal Resolution	~ns (Fast photodetector + electronics)
Absence of saturation effects	Linear response (Cherenkov photons vs beam particles)
Minimal Impacts	Miniaturized device (Radiator thickness ~mm)
Fast Feedback to Machine	

Requirement	Device Performance
High Temporal Resolution	~ns (Fast photodetector + electronics)
Absence of saturation effects	Linear response (Cherenkov photons vs beam particles)
Minimal Impacts	Miniaturized device (Radiator thickness ~mm)
Fast Feedback to Machine	Electronics

Acknowledgments

- I would like to express my gratitude to:
 - Prof. Pedro, Prof. Patrícia and LIP.
 - Carolina Miranda and Gonçalo Roriz.
 - Bruna Lima.
 - João Joaquim.
 - Inês Alvito and Manuel Ratola.
 - Inês Nunes.

Real-Time Beam Monitoring Device For FLASH RT

Gonçalo Ribeiro

2nd ProtoTera Workshop, 9th October 2024, Lisbon, Portugal Supervisors: Prof. Pedro Assis, Prof. Patrícia Gonçalves, Dr. Maurizio Vretenar

Other Dosimeters

- Ionization chambers, semiconductors, and scintillators are common examples.
- Exhibit saturation effects for dose-per-pulse, respectively, > I Gy/s, I5cGy/p, and II-36 Gy/p, according to Di Martino, Fabio, et al. "FLASH radiotherapy with electrons: issues related to the production, monitoring, and dosimetric characterization of the beam." Frontiers in Physics 8 (2020): 570697.

Why a conical radiator?

Heavy Ions

Ongoing Work

With Theory

- Define materials that meet the requirements to be considered as radiators, namely refractive index.
- Light propagation using Cherenkov angle.
- Feasibility: expected light yield using Cherenkov's expressions and PDE of a photodetector.
- Predict the material with less impacts on beam.

With Simulation

- Simulation with Geant4 toolkit.
- Test realistic beams.
- Estimate light collection efficiency.
- Assess impacts on dose delivery profile.
- Test different geometries for optimisation.

Conclusions

- Beam monitoring for FLASH RT: we propose a Cherenkov based device.
- Device suitable for all charged particle beams: electron, proton and heavy ions.
- Miniaturized particle counter with:
 - High temporal resolution (~ns);
 - Minimal Impacts on beam;
 - Absence of saturation effects;
 - Real-time feedback to machine.
- Optimisation: theory and MC simulation.
- Submitted a patent application last August.

Cherenkov Effect

$$\Theta = \cos^{-1} \frac{1}{\beta n}$$

Charged particle travels **faster than light** in a medium (energy threshold!)

Photons are **emitted along a cone** with a defined angle Θ

Emitted photons per transversed material can be computed (particle charge = e):

$$\frac{dN}{dx} = 2\pi\alpha \int d\lambda \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right) \frac{1}{\lambda^2}$$