## Parton Showers for Heavy Ion Collisions

André Cordeiro

Supervisors: Liliana Apolinário, Néstor Armesto, José Guilherme Milhano

**Based on:** <u>arxiv:2409.13536</u> (with Carlota Andres, Fabio Dominguez)



8th LIP/IDPASC PhD Students Workshop 16–17 October 2024

## Why we study Heavy Ion Collisions



- **Quantum Matter:** explore the QCD phase diagram
- **Collectivity:** emergent behaviour from fundamental d.o.f.
- **Cosmology:** the QGP filled the early universe

## Why we study Heavy Ion Collisions



- Quantum Matter: explore the QCD phase diagram
- Collectivity: emergent behaviour from fundamental d.o.f.
- **Cosmology:** the QGP filled the early universe



**Main Challenge:** Very short lifetime (10<sup>-24</sup> s) over wide range of scales

**Solution:** Probe medium with (high-energy) particles produced in the collision!



## Parton Cascades (in vacuum)

#### How to build a Parton Shower

At each scale interval, a splitting may happen:



#### How to build a Parton Shower

At each scale interval, a splitting may happen:

Like radioactive decay: Compute probability of next emission

Probability of no-emission:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

E

 $\mu$ 

(1 - z)E

Phase space depends on splitting scale

 $\alpha C_{\mathsf{F}} \, \mathrm{d}\mu \, \mathrm{d}z$ 

#### How to build a Parton Shower

At each scale interval, a splitting may happen:

Like radioactive decay: Compute probability of next emission

**Probability of no-emission:** 
$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi}\int_s^{s_{\text{prev}}}\frac{d\mu}{\mu}\int_{z_{\text{cut}}(\mu)}^1\frac{dz}{z}\right\}$$

μ

REFERENCE ZE

(1 - z)E

**S**2

Phase space depends on splitting scale

Generate cascade by sampling this probability But first, choose an ordering!

S

 $\alpha C_{\mathsf{F}} \, \mathsf{d} \mu \, \mathsf{d} z$ 

**S**3

#### **Kinematics provide the scales**

- Invariant mass  $m^2 = \frac{\kappa^2}{Ez(1-z)}$
- Formation time  $\tau = E/m^2$
- Opening angle  $\theta = \frac{\kappa}{Ez(1-z)}$





How does the choice of ordering impact the outcome of Parton Showers?

#### **Lund Planes**



Visualise each splitting in a 2D phase-space: The Lund Plane



#### **Lund Planes**

Visualise each splitting in a 2D phase-space: **The Lund Plane** 



#### Teleferenet. $Z_3$ $\kappa_1$ $\kappa_2$ K3

1.0

 $\frac{1}{2}\log_{10}\overline{\langle\theta^2\rangle}$ 

#### $10^{-2}$ 3. Splitting 1 $E_{\text{jet}} = 1000 \text{ GeV}$ Splitting 2 Splitting 3 Total Events $1 \text{ GeV/c} < |\kappa|$ $\log_{10} \frac{|\boldsymbol{\kappa}|}{\text{GeV/c}}$ $\theta^2 <$ $\tau^{-1}$ ordering $|\boldsymbol{\kappa}|^2$ scheme Counts / 0 $-10^{-4}$ $\frac{1}{\log_{10}(1/\theta)}$ 3 3 3 $\dot{2}$ 2 0 0 $\log_{10}(1/\bar{\theta})$ $\log_{10}(1/\overline{\theta})$ 2.5 $\tau^{-1}$ $m^2$ 2.0Average for each $\theta^2$ $\left< \frac{|\boldsymbol{\kappa}|}{\text{GeV/c}} \right>$ splitting density $\rightarrow$ 1.5 $E_{\rm jet} = 1000 \,\,{\rm GeV}$ $1 \text{ GeV/c} < |\kappa|$ Lund plane trajectories $\log_{10} \langle$ 1.0 $\theta^2 < 4$ $|\boldsymbol{\kappa}|^2$ scheme 0.5 $0.0^{1}_{-0.5}$ 0.0 0.51.5 2.0

#### Non constant density

#### **Lund Planes**

Visualise each splitting in a 2D phase-space: **The Lund Plane** 



#### Non constant density







# What happens in a medium?



# What happens in a medium?

First, we need a space-time picture for the shower!

Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011) Casalderrey-Solana, Iancu :: JHEP 08 (2011) 015

## **Simple Quenching Model**

Medium as a 'brick' that deflects partons:



Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011) Casalderrey-Solana, Iancu :: JHEP 08 (2011) 015

## **Simple Quenching Model**

Medium as a 'brick' that deflects partons:







Phase-space for quenched splittings:

• Splitting transverse momentum below medium scale:

$$\kappa^2 < \hat{q}\tau \Leftrightarrow t_{dec}(\theta) < \tau$$

au provides the space-time picture!

• Splitting inside medium:

 $\tau < L$ 

'Seen' as a pair 'Seen' individually  $\tau < t_{dec}$  'Seen' individually

Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011) Casalderrey-Solana, Iancu :: JHEP 08 (2011) 015

## **Simple Quenching Model**

Medium as a 'brick' that deflects partons:







Phase-space for quenched splittings:

• Splitting transverse momentum below medium scale:

$$\kappa^2 < \hat{q}\tau \Leftrightarrow t_{dec}(\theta) < \tau$$

au provides the space-time picture!

• Splitting inside medium:

 $\tau < L$ 

#### How does this affect our parton showers?



Quenched

Vacuum-like

# $au < t_{dec}$



## **Quenching and Parton Showers**

- Look for splittings where  $t_{
  m dec} < au < L$
- \* Simplistic Approach (!)
   We can check:
   \* The full quark branch Oregon and Orego

Ouenched

Vacuum-like

#### **Quenching and Parton Showers**



 $\tau < t_{
m dec}$ 

Vacuum-like

 $t_{
m dec} < au$ 

## **Quenching and Parton Showers**



- Jet radius

 $au < t_{
m dec}$ 

#### Vacuum-like





#### **Quenching and Parton Showers**





#### The Quark Gluon Plasma can be probed by high-energy partons and their radiation pattern

# This requires a space-time picture of a Parton Shower → Choice of ordering prescription is non-trivial

A full coordinate space description is needed!

More details: arXiv:2409.13536



#### Acknowledgements







Fundação para a Ciência e a Tecnologia









Established by the European Commission





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

## **Backup Slides**

#### Excluding time inversions – Lund Planes <u>\*Ordered in angle</u>



Excluding all events with at least one time inversion in quark branch

#### Vetoing time inversions – Lund Planes <u>\*Ordered in angle</u>



Preventing time inversions at generation level (by retrial)

## **Algorithm Ratios**



Ratio between time and angular ordered samples

#### **Controlling for Jet Radius – Algorithm Ratios**



When restricting sample to angles under 0.2, Lund densities scale uniformly

#### **Quenching Weights and Vetos**

