MODELLING CELL SURVIVAL IN AUNP-ENHANCED RADIOTHERAPY USING VOXELIZED CELL GEOMETRIES

8th LIP/IDPASC PhD Students Workshop

Joana Antunes^{1,2}, Ana Rita Teixeira³, Catarina I. Pinto⁴, Filipa Mendes^{4,5}, António Paulo^{4,5}, Jorge M. Sampaio^{1,2}

¹LIP - Laboratório de Instrumentação e Física Experimental de Partículas, Dosimetry, Lisboa, Portugal. ²FCUL - Faculdade de Ciências da Universidade de Lisboa, Physics, Lisboa, Portugal.

³ICNAS/CIBIT — Institute for Nuclear Sciences Applied to Health/Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal ⁴C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal. ⁵DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

ProtoTera

October 16, 2024 Braga

RADIOTHERAPY COMBINED WITH AuNPs

Consists in irradiate the cells with **ionizing radiation** to destroy the macromolecules, as DNA.

selectivity of the tumor to radiation.

MONTE CARLO SIMULATIONS

Easy to simulate

Several models available

Do not use a realistic morphology

At nanoscale, this can be problematic!

Implementation of detailed computational cell models in MC simulations

MONTE CARLO SIMULATIONS – U373 CELL LINE

Our first objective was to reproduce the radiobiological experiments performed at ICNAS and C2TN, in the absence and in the presence of AuNPs.

GEOMETRY

SOURCE

- Co-60 γ-rays
- 160 kVp X-ray
- Proton beam ICNAS

SIMULATION OUTUP

Deposited energy in each voxel of the detailed computational cell model.

Fig. 3 Typical cell survival curves for high and low LET radiation.

In the presence of AuNPs, simulations were conducted considering:

- the experimentally determined uptake of the AuNP-BBN
- the size of the AuNP core
- a uniform distribution within the cell cytoplasm

SENSITIVE ENHANCEMENT RATIO MC SIMULATION

U373 CELL LINE

Mean Inactivation Dose

MID_{wihtout} AuNPs

MID_{with Aunps}

SER = -

FUTURE WORK

Estimation of the direct and indirect DNA damage

Evaluating the ROS production as a function of NP size and number

Cell irradiation with RT protons (MDACC-UT)

Compare the results with experimental data.

ACKNOWLEDGMENTS

CENTRO 2020

Making Cancer History®

UTAustin Portugal Portugal

FUNDING

FCT UIDP/50007/2020

FCT and ANI (LISBOA-01-0247-FEDER-045904)

JA is supported by the ProtoTera PhD fellowship SFRH/BD/151146/2021

QUESTIONS?

Lisb@20²⁰