

R&D: New Plastic Scintillating Materials for Scintillator Calorimeters

Rudnei Machado

Supervisors: Patricia Conde Muíño, Rute Pedro

October 16, 2024

Acknowledgements

SFRH/PRT/BD/151543/2021, DOI10.54499/PRT/BD/151543/2021 EXPL/EME-NUC/1311/2021, DOI 10.54499/EXPL/EME-NUC/1311/2021 2024.05140.CERN

Scintillation Detectors

• Scintillation detectors are devices that emit light when exposed to nuclear particles or radiation.

Challenges for future scintillator-based detectors in High-Energy Physics

- Future precision/high energy colliders will impose stringent requirements on next generation detectors
- R&D starting now to ensure that key technologies are ready at the time of construction
- Scintillator Requirements [1]:
- Large light response;
- Fast signals;
- High radiation hardness

For FCC-hh [2] [3] [4]:

- Doses of up to 5 GGy are expected in the forward
- 2 calorimeters.

cds.cern.ch/record/2784893

		DRDT	< 2030	2030-2035	2040	2040-2045	>2045
	Low power	6.2,6.3					• •
	High-precision mechanical structures	6.2,6.3			ě ě		
Si based	High granularity 0.5x0.5 cm ² or smaller	6.1, 6.2, 6.3	•				ě ě ě
calorimeters	Large homogeneous array	6.2,6.3			ě i		ě ě
	Improved elm. resolution	6.2,6.3			i	i i i	· · · · · · · · · · · · · · · · · · ·
	Front-end processing	6.2,6.3					
	High granularity (1-5 cm ²)	6.1, 6.2, 6.3		•	•		
Nahla limuid	Low power	6.1, 6.2, 6.3			•	ē ē	
calorimeters	Low noise	6.1, 6.2, 6.3			•		
	Advanced mechanics	6.1, 6.2, 6.3			ŏ	ð ð	
	Em. resolution O(5%//E)	6.1, 6.2, 6.3			ē 1	ē ē I	
C.I	High granularity (1-10 cm ²)	6.2,6.3			•		
based on gas	Low hit multiplicity	6.2,6.3			ē	i i i	
detectors	High rate capability	6.2,6.3					
	Scalability	6.2,6.3			•		ěěě ě
Cainsillasing	High granularity	6.1, 6.2, 6.3			ě (ŏŏ	
tiles or strips	Rad-hard photodetectors	6.3					ě ě ě
	Dual readout tiles	6.2,6.3			•	• • !	· · ·
	High granularity (PFA)	6.1, 6.2, 6.3			•		•
Crystal-based high	High-precision absorbers	6.2,6.3			ŏ (ð ð	ě ě
resolution ECAL	Timing for z position	6.2,6.3				ē ē [
	With C/S readout for DR	6.2,6.3			•		ě 🔶
	Front-end processing	6.1, 6.2, 6.3			T	ē T I	ě ě
Fibro bacad dual	Lateral high granularity	6.2					
readout	Timing for z position	6.2				ŏ i i	
	Front-end processing	6.2					
	100-1000 ps	6.2					•
Timing	10-100 ps	6.1, 6.2, 6.3	•				• • •
	<10 ps	6.1, 6.2, 6.3			•	• •	
Radiation	Up to 10 ¹⁶ n _{ed} /cm ²	6.1,6.2	• •		•	• •	
hardness	> 10 ¹⁶ n _{ed} /cm ²	6.3					
Excellent EM energy resolution	< 3%/√E	6.1,6.2		• •			•

Plastic Scintillator Detectors

- Scintillating Plastic has low cost/weight and is malleable
- Typical organic polymer bases:
 - Polystyrene and Polyvinyltoluene
 - Doped with wavelength shifters (WLS) in residual concentrations

Scintillation Properties of PEN (Polyethylene Naphthalate) and PET (Polyethylene Terephthalate)

- PEN [5];
 - Competitive light response (10.500 phot/MeV)
 - Emits light \approx in the same λ as some commercial scintillators (BC-408)
- PET has a faster light pulse than PEN (35 η s vs. 7 η s) [6], [7], [8]
- PET/PEN have a good recovery when exposed to radiation [9]
- PEN degrades less and recovers faster, PET has a larger total recovery [9]

³

Objectives

Research new plastic scintillating materials, PEN and PET, with a specific focus on their optical and scintillation properties.

- Do PET and PEN blend with synergy?
 - *PEN (high light response, radiation hardness)*
 - PET (damage recovery, faster timing)

Outline:

- Production of Scintillator Samples: pure PET/PEN, PET:PEN blends and PET+Dopants
- Characterization of samples:
 - Emission Spectra
 - Measurement of Light Response
- Summary and Future work

Sample Production

Granulated raw materials (PET/PEN) are used

- The samples were produced in collaboration with the Institute of Polymers and Composites (IPC) of the University of Minho
- Manufacturing Processes: Injection molding.
- Samples measure 30 x 30 x 2 mm³

Samples Produced	Quantity
PEN	44
PET	25
PET + BBOT	11
PET + POPOP	11
PET90PEN10	22
PET75PEN25	21
PET50PEN50	34
PET25PEN75	34
PET10PEN90	18
PET75PEN25 + POPOP (0.022%)	11
PET75PEN25 +BBOT (0.022%)	10
PET50PEN50 + POPOP (0.022%)	15
PET50PEN50 + BBOT (0.022%)	16
PET90PEN10 + POPOP (0.022%)	16
PET90PEN10 + BBOT (0.022%)	20
PET50PEN50+BBOT (0.05%)	15
PET50PEN50+POPOP (0.05%)	15
Total	338

POLYMERS AND COMPOSITES

- Scintillator properties depend on production parameters:
 - Material flow
 - **Injection speed**
 - Pressure
 - Cooling time
 - Melting temperature

Emission Spectra

- PET sample:
 - Peak ~ 395 nm
 - Shape and peak are similar with Literature
- PEN sample:
 - In the literature, the spectra vary a lot from each other
 - Main peak ~ 405 nm, slightly below the Literature
 - 2nd peak ~ 450 nm, could be attributed to differences in the source material composition

6

- As expected, adding POPOP and BBOT to PET causes the WLS of the original scintillation light
- Resulting peaks:
 - PET+POPOP ~ 425 nm
 - PET+BBOT ~ 455 nm

PET 2010 [10], PET/PEN 2011 [11], PET:PEN Blends 2013 [12], PEN Rad Damage 2013 [13], PEN active struct 2019 [14], PEN Rad Damage 2022 [6]

Normalised LR Samples to PEN/PET, Blends and PET+dopants

- Light Response measured with ⁹⁰Sr source (Beta source)
- PEN has 7 times higher light response than PET
- Addition of dopants to the PET-base material potentiates the light emission:
 - Dopants in 0.22% mass concentration
 - BBOT: increase in the maximum LR by 80%
 - POPOP: increase in the maximum LR by 120%

- Different PET:PEN mixtures as a function of the PEN proportion;
- Increase in light response with the proportion of PEN, expected given the higher light response of PEN compared to PET;

Summary and Future Work

- Future HEP experiments with scintillator detectors will need cheap materials with high scintillation efficiency and radiation hardness.
- R&D of pure PEN and PET samples, PET+dopants, and PET:PEN mixtures in different proportions:
 - Light response of PEN is about 7 times higher than PET
 - Addition of dopants to PET doubles its light response
 - PET with dopants exhibits wavelength shifting (WLS) in light emission
 - For PEN/PET blends, light response increases with the PEN proportion
 - For blends, PEN has predominant spectrum
- This work was published in NIM-A (DOI:10.1016/j.nima.2024.169627)

Future work:

- Measurement of the signal time properties of the existing samples
- R&D for the production of larger samples
- Study of the radiation hardness of PEN/PET and PET:PEN blends

Thank you for your attention

BACKUP

⁹⁰Sr scan Measurements

- Light response (LR in mV) as a function of ⁹⁰Sr source position
- Two scintillators are measured:
 - Reference Tile: 3 mm thick scintillator (ATLAS/LHC Tile Calorimeter - tile #4)
 - Sample: Manufactured scintillator (2 mm thick)
- Two values are extracted from the scan
 - 1. Maximum LR in the sample
 - 2. Maximum LR on the reference tile
- Max normalized LR is

Max LR_{sample}

- Max LR_{ref} tile
- is the main metric for evaluating performance of different composition samples

Emission Spectra

PET:PEN mixtures:

- Spectra are similar to the PEN spectrum
- Peak gradually shifts 390 nm → 410 nm with increasing PEN proportion

Emission Spectra

- As expected, adding POPOP and BBOT to PET causes the WLS of the original scintillation light
- Resulting peaks: PET+POPOP ~ 425 nm
 - PET+BBOT ~ 455 nm
- Emission Spectra of all blends are similar in terms of peaks and shape Seems that BBOT interacts differently for each
- type of mixture

PEN Transmittance

- Results show good agreement
 - PEN: ~ 80 %
 - PEN Literature: ~ 90 %
- Difference (our and Literature PEN) in transmittance is probably due to the different thicknesses
 - PEN sample: 2 mm
 - Literature: 0.1 mm
- PEN exhibits transparency above 400 nm
 - Scintillation below 400 nm is attenuated by the transmission characteristics
 - PEN's Light yield might improve by adding an adequate WLS

PEN Rad Damage 2022 [6]

Emission Spectra

a) PET:PEN blends

- PET:PEN mixtures:
 - Spectra are similar to the PEN spectrum
 - Peak gradually shifts 390 nm → 410 nm with increasing PEN proportion

Setup for Measuring the Light Response (LR)

* WLS fibers

* HV Power Supply

- * ⁹⁰Sr source scans the scintillators
- * PMT
- * Multimeter
- * Control and data acquisition software (LabVIEW)

- Scintillator signal: each point is the average of 30 measurements.
 - a measurement is the PMT signal integrated over 400 ms;
- Noise value is updated at each 5 scan points
 - source outside the scintillator area;
- Light response (LR) is defined as measured signal after noise subtraction

Experimental Setup for the Emission Spectrum measurement

Spectrometer

C10082MD, for UV to near IR (200 to 800 nm) Measured with the spectrometer

- LED source: E275-3-S UVC LED
- Manufacturer information: peak between 270-280 nm
- Our measured Peak ≈ 271 nm

Sample Production Parameters

			Injection			2nd Injection				Dosing										
Samples	Period	Process	Model	Dried material	Dosing cm ³	Comutation cm ³	Speed cm ³ /s	Pressure bar	Pressure time (s)	Comutation cm ³	Speed cm ³ /s	Pressure bar	Dosing mm ³	Comutation mm ³	Speed mm/s	Pressure bar	Temperature Set Nozle/T5/T4/T3/T2/T1 (°C)	Cycle Time (s)	Cooling time (s)	Residence time (min)
PET + BBOT	September-23	Injection	Boy 22A	4h, 60°C	8.5	2.7	30	1500	4	2.7	2.5	400	8.5	2.7 cm ³	150	30	*/265/260/250/250/245	50.73	20	Not needed
PET + POPOP	September-23	Injection	Boy 22A	4h, 60°C	8.5	2.7	30	1500	4	2.7	2.5	400	8.5	2.7 cm ³	150	30	*/265/260/250/250/245	47.05	20	Not needed
PET75PEN25	12-Oct-23	Injection	Boy 22A	PET: 4h, 60°C; PEN: 4h, 110°C	8.5	2.7	30	1500	3	5 mm ³	10 mm/s 2.5 cm ³ /s	300	8.5	2.7 cm ³	150	10	*/295/290/280/260/250	52.1	20	5
PET:10/PEN:90	13-Oct-23	Injection	Boy 22A	PET: 4h, 60°C; PEN: 4h, 120°C	8.5	2.7	30	1500	4	5 mm ³	10 mm/s 2.5 cm ³ /s	300	8.5	2.7 cm ³	150	30	*/300/285/280/275/255	51.6	20	5
PEN	6-Nov-23	Injection	Boy 22A	PEN: 6h, 110°C	8.5	2.7	30	1500	4	2.7	2.5 ccm/s	600	8.5	2.7	150	20	*/295/290/285/280/250	52.85	20	5
PET	7-Nov-23	Injection	Boy 22A	6h, 70°C	8.5	2.7	30	1500	4	2.7	2.5	600	8.5	2.7	150	20	*/275/270/265/260/250	47.05	20	Not needed

Manufacturing PET/PEN

	PET		
Samples/Articles	Brand/Type	Material Form	Sample Size
Our PET Sample, doi:10.1016/j.nima.2024.169627	Selenis Selekt™ BD 110	granulate	30 x 30 x 2 mm3
doi:10.1098/rspa.2010.0118 (PET 2010)	Mitsui Chemicals Inc., Japan	lump of PET bottles	110×50×5mm3
doi:10.1209/0295-5075/95/22001 (PET/PEN 2012)	Teijin Chemicals Ltd.	plate	35 × 35 × 5 mm3
doi:10.1016/j.radmeas.2013.06.006 (PET:PEN blends2013)		plate	31 x 31 x 5 mm3
	PEN		
Samples/Articles	Brand/Type	Material Form	Sample Size
Our PEN Sample, doi:10.1016/j.nima.2024.169627	GoodFellow Cambridge Ltd.	granulate	30 x 30 x 2 mm3
Our PEN Sample, doi:10.1016/j.nima.2024.169627 doi:10.1016/j.radmeas.2013.06.006 (PET:PEN blends2013)	GoodFellow Cambridge Ltd. 	granulate plate	30 x 30 x 2 mm3 31 x 31 x 5 mm3
Our PEN Sample, doi:10.1016/j.nima.2024.169627 doi:10.1016/j.radmeas.2013.06.006 (PET:PEN blends2013) doi:10.1016/j.nimb.2013.03.027 (PEN Rad Damage 2013)	GoodFellow Cambridge Ltd. Teonex [®] , Teijin DuPont, Japan	granulate plate film	30 x 30 x 2 mm3 31 x 31 x 5 mm3 9 µm thick
Our PEN Sample, doi:10.1016/j.nima.2024.169627 doi:10.1016/j.radmeas.2013.06.006 (PET:PEN blends2013) doi:10.1016/j.nimb.2013.03.027 (PEN Rad Damage 2013) doi:10.1063/1.5019011 (PEN Active struct 2018)	GoodFellow Cambridge Ltd. Teonex [®] , Teijin DuPont, Japan Tejin-DuPont:TN-8065S and TN-8050SC (Teonex [®])	granulate plate film pellets	30 x 30 x 2 mm3 31 x 31 x 5 mm3 9 µm thick 30 x 30 x 3 mm3
Our PEN Sample, doi:10.1016/j.nima.2024.169627 doi:10.1016/j.radmeas.2013.06.006 (PET:PEN blends2013) doi:10.1016/j.nimb.2013.03.027 (PEN Rad Damage 2013) doi:10.1063/1.5019011 (PEN Active struct 2018) doi:10.1088/1748-0221/14/07/P07006 (PEN Active struct 2019)	GoodFellow Cambridge Ltd. Teonex [®] , Teijin DuPont, Japan Tejin-DuPont:TN-8065S and TN-8050SC (Teonex [®]) Tejin-DuPont:TN-8065S and TN-8050SC (Teonex [®])	granulate plate film pellets pellet or granulate	30 x 30 x 2 mm3 31 x 31 x 5 mm3 9 µm thick 30 x 30 x 3 mm3 30 x 30 x 3 mm3
Our PEN Sample, doi:10.1016/j.nima.2024.169627 doi:10.1016/j.radmeas.2013.06.006 (PET:PEN blends2013) doi:10.1016/j.nimb.2013.03.027 (PEN Rad Damage 2013) doi:10.1063/1.5019011 (PEN Active struct 2018) doi:10.1088/1748-0221/14/07/P07006 (PEN Active struct 2019) doi:10.1140/epjc/s10052-019-6810-8 (PEN WLS in Lar 2019)	GoodFellow Cambridge Ltd. Teonex [®] , Teijin DuPont, Japan Tejin-DuPont:TN-8065S and TN-8050SC (Teonex [®]) Tejin-DuPont:TN-8065S and TN-8050SC (Teonex [®]) Teijin DuPont:(Teonex [®] Q83)	granulate plate film pellets pellet or granulate film	30 x 30 x 2 mm3 31 x 31 x 5 mm3 9 μm thick 30 x 30 x 3 mm3 30 x 30 x 3 mm3 125 μm thick

Coordinates in the scan for noise acquisition

Timing and Efficiency

PEN Scintillator Waveform

of CERN test beam

- PET has a faster light response than ٠ PEN, but a lower light response.
- PEN has a detection efficiency of ۲ approximately 60 % and PET has an efficiency of 10 %

[8]