

RADART

2023 - 2024

Researchers = 7 Trainees = 8 MSc. Students = 10 PhD. Students = 9

Sapphire detectors for radiotherapy (Cristiana Rodrigues)

Al₂O₃ vs Al₂O₃:C,Mg grown w/ MoO₃ p. 99.5%

Novel Doped Al₂O₃ grown w/ MoO₃ p. 99.0%

Proton Scintillating Fiber Array Detector (Duarte Guerreiro)

64 scintillating fibers MultiAnode PMT

Proton beam tests at HollandPTC - 130 MeV

Proton beam tests at HollandPTC - 130 MeV

Bragg peak detection capability

Radiotherapy combined with Gold nanoparticles (Joana Antunes)

- Increase production of secondary particles
- Increase production of
 - Reactive Oxygen Species

PHYSICAL Production of photoelectrons and auger electrons

Catalyzing ROS production

CHEMICAL

Mechanisms of high-Z NP radiosensitization.

BIOLOGICAL Oxidative stress Cell cycle effects

Jackson, N. et al., "Application of High-Z Nanoparticles to Enhance Current Radiotherapy Treatment", Molecules, 2024 Kempson, I., "Mechanisms of nanoparticle radiosensitization", Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021 S. Lacombe, E. Porcel, and E. Scifoni, "Particle therapy and nanomedicine: state of art and research perspectives", Cancer Nanotechnol, 2017

Radiobiological Effects of AuNPs in glioblastoma

Reconstructed computational GBM models

Radiobiological Models: LEM and MKM

Proton Therapy in Neurodegenerative Disorders (Carina Coelho)

positioning of the cell samples

electron beam

photon beam

Proton Therapy in Neurodegenerative Disorders

Expression of the mutated protein 97Htt associated with Huntington disease

Proton Therapy in Neurodegenerative Disorders

C²TN

High doses of γ-radiation diminish the formation of amino acids *in-vitro* amyloid fibrils

Simulations of Bond Breakage in Amyloid-ß Proteins by proton beam (Francisca Afonso)

Partial-volume proton-FLASH – meningioma case (Joana Leitão)

Centro de Protonterapia Grupo Vquirónsalud

dkfz.

Gadolinium-based contrast agents as surrogates for dose and proton range measurements (Mariana Brás)

The key role of the background yield of chemical species during CONVENCIONAL vs. FLASH

Miguel Molina-Hernández

RADART team

Hard working Staff (PhD students)

Cristiana Rodrigues

Duarte Guerreiro

Joana

Antunes

Carina Coelho

Francisca Afonso

Joana

Leitão

Mariana Brás Miguel Molina-Hernández

Senior Staff

Patrícia Gonçalves