

Passage of particles through matter and applications to detectors

B. Laforge LPNHE Paris

Sorbonne University

Disclaimer

• Particle and nuclear physics detectors are very complex, a lot of physics is behind the detection of particles

- particle/nuclear/astroparticle physics
- ✤ material science
- \bullet electronics
- ✤ mechanics, ...
- To get a good understanding, one needs to work on a detector project

• This lecture can only give a glimpse at the physics of detectors and cannot cover everything and biased by a necessary selection given the time of the lecture !

Useful sources and acknowledgement

- Lectures strongly inspired from our LPNHE lectures on physics (F. Derue)
- These lectures are based upon

O lectures (in French) at the École IN2P3 « De la physique au détecteur » 2020/21 and 2022, in particular the ones of P. Puzo and L. Chevalier
O lectures (in French) at the École IN2P3 « Techniques de base des détecteurs », 2022, in particular the ones from J. Peyré and E. Petit
O lectures of « The European School in Instrumentation for Particle and Astroparticle Physics (ESIPAP) », 2022, in particular the ones of M. Delmastro, L. Di Caccio and G. Unal
O lectures for CERN summer students, 2022, in particulat the ones from W. Riegler
O lectures for DESY summer students, 2022, in particular the ones of I-M. Gregor

O many more

• Books and reviews

O Reviews in Particle Data Group

- section on passage of particles through matter
- section on particle detectors at accelerators
- O Techniques for nuclear and particle physics experiments, W. R. Leo [pdf]
- O Particle Physics Reference Library,

Volume 2: Detectors for Particles and Radiation, 2020 [link]

Overview

1) Introduction

- . Generalities
- . A bit of history

2) Interaction particle-matter

- . Charged particles
- . Neutral particles

3) Particle detection

- . Gaseous ionization detectors
- . Scintillation detectors
- . Semiconductor detectors
- . Calorimeters/bolometers

4) Measurement of some particle properties

- . Track and charge reconstruction
- . Energy measurement
- . Particle identification

5) Quantum sensors

Part 1 - Generalities

What are the characteristics of a particle?

• Particles are characterized by :

• Relativistic kinematics states :

1 eV is a small energy !

 $1 \text{ eV} = 1.6 \ 10^{-19} \text{ J}$

$$M_{bee} = 1 g = 5.6 \times 10^{32} eV$$

 $v_{Bee} = 1 m/s$
 $E_{Bee} = 10^{-3}J = 6.2 \times 10^{15} eV$

Particles are characterized via the measurements of :
 O (Ε, p, Q) or (p, β,Q)
 O (p, m, Q)
 In addition to the identification of their interaction properties

$$\beta = \frac{v}{c} \qquad \gamma = \frac{E}{m} \qquad \gamma = \frac{1}{\sqrt{1 - \beta^2}} \qquad \vec{\beta} = \frac{\vec{p}c}{E}$$
$$E = m\gamma c^2 = mc^2 + E_{kin} \qquad E^2 = \vec{p}^2 c^2 + m^2 c^4$$
$$\vec{p} = m\gamma \vec{\beta} c$$

 $E_{LHC} = 14 TeV = 14 \times 10^{12} eV$

LHC has a total stored energy of 10^{14} protons x 14.10^{12} eV = 2.2×10^{8} J which corresponds roughly to a 100t truck with speed of 100 km/h

Why study detector physics?

- Particle, nuclear, astro-particle physics discoveries are driven by detector (and accelerator) innovations
- and you need fundamental understanding to drive innovation

• Instruments = Detectors

For particle physics / photon science / medicine / societal applications, a good data analysis requires to have a clear idea of :

- O what is the underlying principle of the detector of the data being analyzed?
- O how do they work from the physics to the provided measurement?
- O how precise and unbiased are the measurements?

Key particle discoveries

What particles do we need to detect?

Standard Model of Elementary Particles

But unfortunately, the problem is a bit more complicated because particle aggregates :

- No free quarks,
- p, n form nuclei

...

- nuclei and e form atoms
- Atoms form molecules

Quarks do not live alone : we need to address the hadron mess !

With the first three lighter quarks (u,d,s), we need to handle :

The meson octet (q-qbar states). Particles along the same horizontal line share the same strangeness, s, while those on the same leftleaning diagonals share the same charge, q (given as multiples of the elementary charge).

More than 200 mesons have been produced and characterized, most in high-energy particle-accelerator experiments.

The J = 1/2 baryon octet

The J = 3/2 baryon decuplet

Baryons need 3 quarks to maintain color neutrality (1 red, 1 blue, 1 green) and with 6 types of quarks, that's 216 possible combinations, but the top quark doesn't hadronize, so that leaves 75 possible Baryons (and their antiparticles)

Tetra-quarks and penta-quarks have been observed but have a so short live time that they are not important for detectors

What type of particles do we face in experiments ?

- The detector is made of mostly stable particles (except radioactive elements)
 - Usual matter is made of nuclei (protons + neutrons) and electrons
- The particles of scientific interest to be detected are :
 - Elementary of not (hadrons, long-lived resonances, ions)
 - Stable or not : e⁺, e⁻, p, n, pions (π^0 , π^+ , π^-), α , kaons (K_s, K_L, K^{+/-}), mesons or baryons (Δ , Λ ,...), ...

- Three interactions are involved in their interaction with detector matter:
 - Electromagnetic, weak and strong interaction but never gravity
- We are interested only in particles with typical E>100 keV
 - Lower energies are the domain of ionic physics, molecular physics, etc.

Properties of the main usual particles

Particles	Mass mc ²	Charge	Mean Lifetime	Main interaction
electron	$m_e = 511 \text{ keV}$	-1	stable	Electromagnetic (EM)
muon	m_{μ} =206.6 m_{e} = 105.66 MeV	-1	2.2 μs	EM /decay = weak
photon	0	0	stable	EM
neutrino	<0.8 eV	0	stable	weak
proton	$m_p = 1836 m_e = 938.27 MeV$	+1	stable	strong
neutron	$m_n = 1838 m_e = 939.56 MeV$ $m_n > m_p$	0	878 s In nuclei=long	strong
charged pion Neutral pion	$m_{\pi^{+/-}} = 140 \text{ MeV}$ $m_{\pi^0} = 135 \text{ MeV}$	-1,1 0	10 ⁻⁸ s 10 ⁻¹⁷ s	EM/strong Decay EM (loop)
other hadrons	m _h > m _μ >> m _e	-1;0;1;2 (Δ ⁺⁺)	usually $< 10^{-20}$ s With few exceptions K _L , B ₀ , D ₀	strong
nuclei	m_p to \sim (A-Z) m_n +Z m_p	1 to Z	usually stable	strong

Some numbers to keep in mind

 $m_e = 511 \text{ keV}$; $m_u = 105 \text{ MeV}$; $m_\pi = 140 \text{ MeV}$; $m_{p,n} = 2000 \text{ m}_e = 0.94 \text{ GeV}$

• Time and distances

O in 1 ns, a particle with v=c travels 30 cm (c= 3x10⁸ m/s)
O in 1 ms, an ionisation electron travels 5 cm in gas
O in 1 ms, a proton travels 11 times in the LHC (about 300 km)

Mean lifetime and path

O for a detector, muons are stables,
B mesons cannot be detected
before they decay
O stable particles are detected,

unstable particles are reconstructed

	muon	pion	B meson
Mean Lifetime	2.2 μs	26 ns	1 ps
Mean path	660 m	7.8 m	300 µm

Of course with special relativity, this depends also on $\gamma \rightarrow$ time dilatation in the lab frame provide larger path

So stability of a particle is a question to be revisited experiment by experiment !

The different particles do not interact the same way

To keep in mind...

The different particles do not interact the same way

• All effects mentioned on the previous slide are strongly dependent on the type and momentum of the incident particle

- Only a few mechanisms lead to significant energy loss at typical energies relevant in particle physics
 - O ionization, excitation, pair production, interactions with the absorber material's nuclei
- In spite of this, the other effects are important, because they allow us to build detector parts for particle identification

O example : Cherenkov detectors, transition radiation detectors

Cross-section and effective size of a particle

Cross-section related to the probability of interaction :

$$\sigma = \pi d^2$$

$$E = h\nu = \frac{hc}{\lambda} \longrightarrow \lambda = \frac{hc}{E}$$

De Broglie Wavelength is decreasing like 1/E

So higher energies probe shorter distances

Part 1 – A bit of history I have no time to discuss old technics (Cloud chambers, Spark Chambers, Bubble chambers, ...) unfortunately.

Nature volume 159, pages 694–697 (1947)

Part 2 – Interactions of particles in matter Charged particle interactions

Electromagnetic interaction of charged particles in matter

atomic electrons. The incoming particle loses energy and the atoms are (soft collisions) <u>excited</u> or are (hard collisions) <u>ionised.</u>

Exited atoms get back to their ground state by reorganizing their electron cloud (light emission)

Inelastic interaction with the atomic electrons

Ground State

Atom de-excitation (after photoelectric effect)

Electromagnetic interaction of charged particles in matter

atomic electrons. The incoming particle loses energy and the atoms are (soft collisions) <u>excited</u> or are (hard collisions) <u>ionised.</u>

Exited atoms get back to their ground state by reorganizing their electron cloud (light emission) Elastic interaction with the atomic nucleus. In c

The particle is deflected (scattered) causing <u>multiple scattering</u> of the particle in the material. During this scattering, a <u>Bremsstrahlung</u> photon can be emitted.

eus. In case the particle's velocity is larger sing than the velocity of light in the medium, the resulting electromagnetic shock wave manifests itself as

<u>Cherenkov Radiation</u>.

When the particle crosses the boundary between two media, there is a probability of the order of 1% to produce an X ray photon, called <u>Transition radiation</u>.

EM interaction of Heavy charged particles in matter

• Heavy charged particles

O particles having m≥m_µ≈200 m_e, i.e everything but electrons : $\mu^{+/-}$, $\pi^{+/-}$, α, p, K^{+/-} ...

• A charged particle go through a material of thickness Δx

- ${\rm O}$ the energy of the particle decreased by $\Delta {\rm E}$
- ${\rm O}$ the deposited energy ΔE will depend on :
 - \bullet material thickness (Δx) and material density (ρ)
 - particle mass (m), charge of the nuclei in the material (Ze), kinetic energy (T or E_c) and velocity (β)
- The cross-section of inelastic collisions is very small ($\sigma \approx 10^{-16} 10^{-17} cm^2$) o but the number of atoms is very high (N $\approx 10^{23}$ atoms/cm³) o a 10 MeV proton losses all its energy in 0.25 mm of copper

• The number of interactions is ruled by statistics but is very high (because of the norm of Avogadro number !) • relative fluctuations are small (central limit theorem, large number rules)

o in practice one observes a continuous diminishing of the energy down to the thermal energy (kinetic motion energy) of atoms in the medium

• The mean energy loss by unit of length during the path is a central number for detector physics:

$$\left[\left\langle\frac{dE}{dx}\right\rangle\right] \equiv \left[\frac{1}{\rho}\left\langle\frac{dE}{dx}\right\rangle\right]$$
, usually expressed in *MeV*. g^{-1} . cm^2 . (MeV/cm x (g/cm³)⁻¹)

Bethe-Heitler Formula for Mean Energy loss by ionisation for Heavy charged particles in matter

• Quantum relativistic mechanics allows to derive the Bethe-Bloch formula describes the mean energy lost by heavy particles in matter by ionization:

$$\frac{dE}{dx} = -4\pi N_A r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{Z^2}{\beta^2} \left[ln \left(\frac{2m_e c^2 \gamma^2 \beta^2 W_{max}}{I^2} \right) - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \right]$$
 heavy charged particles (not valid for electrons) heavy charg

Material : z/A is the fraction of nucleons that are protons

Properties of the particle

$$\begin{split} & K = 4\pi N_A r_e^2 m_e c^2 \\ &\approx 0.307 MeV g^{-1} cm^2 \\ & r_e: \text{classical electron radius} \\ & r_e = \frac{e^2}{4\pi \varepsilon_0 m_e c^2} \approx 2.8 fm = 2.8 \times 10^{-15} m \\ & m_e: \text{electron mass} \\ & N_A: \text{Avogadro's number } 6.02 \times 10^{23} \, \text{mol}^{-1} \end{split}$$

 W_{max} maximum kinetic energy which can be transferred to the electron in a single collision

I : mean excitation energy of the medium

- density term due to polarization effects
- $\overline{2}$ leads to saturation at higher energies
- C shell correction term, only
- \overline{Z} relevant at lower energies

A : atomic weight of absorbing material [g mol] ρ : density of absorbing material

- z : charge of incident particle in units of e
- Z : charge of the nucleus of the material
- β : v/c of the incident particle

Bethe-Heitler Formula for Mean energy loss by ionisation for Heavy charged particles in matter

Bethe-Heitler Formula for Mean energy loss by ionisation for electrons in matter

Bethe-Bloch formula needs modification:

- Incident and target electron have same mass $m_e Wmax = T/2$
- Scattering of identical, undistinguishable particles
- New processes to be considered

$$-\left\langle\frac{dE}{dx}\right\rangle = 4\pi N_A r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{1}{\beta^2} \left[ln\left(\frac{2m_e c^2 \gamma^2 \beta^2 T}{2I^2}\right) + \mathbf{F}(\gamma) \right] \qquad (\mathsf{T} = \text{kinetic energy of the electron})$$

Remark: different energy loss for electrons and positrons at low energy as positrons are not identical to electrons and some annihilation finally occurs with usually 2 γ of 511 keV

But importantly, e^{+/-} are low mass and their energy loss is very early dominated by bremsstrahlung effect !

Bethe-Heitler Formula for Mean energy loss by ionisation for electrons in matter

Bethe-Bloch formula needs modification:

- Incident and target electron have same mass m_e so Wmax = T/2
- Scattering of identical, undistinguishable particles
- New processes to be considered

Positrons

Lead (Z = 82)

Mean energy loss by bremsstrahlung in matter

Bremsstrahlung arises if particles are accelerated in Coulomb field of nucleus :

i.e. energy loss proportional to $1/m^2 \rightarrow main relevance for electrons or ultra-relativistic muons$

Mean energy loss by bremsstrahlung : definition of the critical energy

Critical energy:

$$\left. \frac{dE}{dx}(E_c) \right|_{\text{Brems}} = \left. \frac{dE}{dx}(E_c) \right|_{\text{Ion}}$$

Empiric evolution with Z for electrons :

$$E_c^{\text{Gas}} = \frac{710 \text{ MeV}}{Z + 0.92}$$
$$E_c^{\text{Sol/Liq}} = \frac{610 \text{ MeV}}{Z + 1.24}$$

$$\left(\frac{dE}{dx}\right)_{\text{Tot}} = \left(\frac{dE}{dx}\right)_{\text{Ion}} + \left(\frac{dE}{dx}\right)_{\text{Brems}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ K_0 = 12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

$$\sum_{\substack{k=12.86 \text{ g cm}^{-2} \\ E_c = 19.63 \text{ MeV}}$$

Beyond the critical energy, electron interaction is fully dominated by radiation

$$\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} r_e^2 \cdot E \ln \frac{183}{Z^{\frac{1}{3}}}$$

$$\frac{dE}{dx} = \frac{E}{X_0} \quad \text{with} \quad X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{\frac{1}{3}}}}$$
[Radiation length in g/cm²]
$$E = E_0 e^{-x/X_0}$$

$$\frac{A}{A \text{fter passage of one } X_0 \text{ electron has lost all but (1/e)th of its energy}}{[\text{i.e. 63\%}]}$$

Precision of the mean ionization prediction?

Bethe-Bloch calculations are difficult, different models exist

- Landau-Sternheimer calculation
- Bethe-Sternheimer calculation
- Allison-Cobb Monte Carlo Ann. Rev. Nucl. Sci., 30 (1980) 253

Level of (dis)agreement: ~3% in relativistic rise

Common problem

• what E_{cut} to be used? What's E_{cut} at all?

- Tracking detectors usually DON'T measure the full energy loss of a particle!
- Secondary electrons with sufficient energy may escape from track, e.g. to adjacent drift cell, pad etc.
 - may be recognized as separate hit, not associated to track
 - detectors measure RESTRICTED energy loss instead of full energy loss

- Cut-off energy $\mathsf{E}_{\mathsf{cut}}$ defines maximum energy of an electron still associated to a track
 - depends on detector geometry, double hit resolution, magnetic field, diffusion and more
 - typical E_{cut} is a few keV corresponding to some 100 (m – 1 mm range

- E_{cut} is difficult to determine, basically a free parameter
- Impossible to make calculations of Bethe-Bloch function to percent level or even better
 - results depend on E_{cut} a lot

[M. Hauschild, RD51 workshop on Gazeous detector contributions to PID]

Fluctuations on the ionization path

 Real detector measures the energy DE deposited in a layer of finite thickness Dx

 $\Delta E = \sum_{n=1}^{N} \delta E_n \qquad \text{with N, the number of collisions,} \\ \delta E, \text{ the energy loss in a single collision}$

O ionisation loss dE distributed statistically O so called energy loss « straggling »

Small thickness or low-density materials

 O few collisions, but some of them can have large energy transfer
 O fluctuations (due to δ electrons) become important
 O dE/dx distributions show large fluctuations for high losses (Landau tails) leading to asymmetric distributions

Large thickness, or high-density materials
 O many collisions
 O central limit theorem: *dE/dx* distributions are Gaussian

By measuring the particle momentum and its energy loss, one can measure the particle mass (i.e. particle identification)

Straggling functions in silicon for

500 MeV pions

How to improve the identification power of dE/dx?

[M. Hauschild, RD51 workshop on Gazeous detector contributions to PID]

How far a heavy charged particle goes ?

• Range R is the distance traveled (depth) in the medium by a particle until it stops

 $R(E_0) = \int_0^{E_0} \frac{1}{dE/dx} dE$

 \bullet Calculation shows that R/M is a universal function of $\beta\gamma$

• Example :

 \bigcirc consider proton with momentum of 1 GeV on a Pb target

(p=11.3 g/cm)

 $\ensuremath{\bigcirc}$ from the figure we can read

• R/M~200 g cm⁻² GeV⁻¹

• R = 200/11.3 *1GeV ~18 cm

Note : this curve is only valid for particles which lose energy only by ionization and atomic excitation

O low energy hadrons

 ${\rm O}$ muons up to a few hundred GeV

Bragg curve for charged heavy particles

Multiple Scattering

- A charged particle going through a medium will be deflected by numerous interactions at large distance with atomic nuclei
- Originated from Coulombian scattering on nuclei which cross-section is :

$$\frac{d\sigma}{d\theta} = 4\pi \left(zZr_0 \frac{m_e c^2}{p\beta c} \frac{1}{tan^2(\theta/2)} \right)^2$$

• Width θ of the distribution is given by :

$$\theta_0 = \frac{13.6 MeV}{\beta cp} z \sqrt{(x/X_0)} [1 + 0.038 ln(x/X_0)]$$

O where X is the radiation length, characteristics of the material O precise value, better than 10% for 10 <x/X < 100

 If there are many collisions, the mean scattering angle is zero

For large values of θ , the curve deviates from a Gaussian and has a shape in sin⁻⁴($\theta/2$)

Multiple Scattering

 At small energies (p~1 MeV/c), after 1 X₀, the information on the initial direction is lost

Typical trajectories for an e , a proton and an α of 10 MeV in silicium

A particle of high energy which stops in matter always ends up to be concerned by multiple scattering

High energy muons

 Critical energy for μ[±] changes with the material for iron (Z=26), E_c(e) : 22.4 MeV, E_c(μ) ~ 100-200 GeV

• Interaction of μ with matter can then be modeled with three parts in the spectrum:

○ the most probable loss is 8 GeV/c (3.4 MeV g cm) ○ full width at half-maximum is 9 GeV/c (resolution is 9/992~0.9%) ○ the tail of the distribution is due to Bremsstrahlung

Muon critical energy for the chemical elements

High energy muons are highly penetrant

The momentum distribution of 1 TeV/c muons after traversing 3 m of iron

Čerenkov radiation

A charged particle radiates a γ when traversing a medium, if its velocity β is larger than the local phase velocity v of light in the material

Mechanism : the field E polarizes the medium. After the passage of the particle, it returns to its initial state

O the change of polarization is an EM perturbation moves at velocity c/n

O refractive index n=c/v

 \bigcirc if v<c/n, the EM signal propagates faster than the particle

O at a given point of space, these signals arrive in random way

O the light is emitted in a cone with a characteristic opening angle, the Čerenkov angle q, which depends on the velocity of the particle and the refractive index

$$v_{th} \ge \frac{c}{n} \Rightarrow \beta_{th} \ge \frac{1}{n}$$

 if v>c/n, the EM signal propagates slower than the particle
 at a given point of space, elementary perturbations will sum up in a single wave front

$$cos(\theta_c) = \frac{(c/n)t}{vt} = \frac{c}{nv} = \frac{1}{\beta n}$$

Čerenkov radiation

• Threshold energy and refractive index \bigcirc threshold kinetic energy is : $E_{th} = r$

$$mc^2\left(\sqrt{\left(\frac{n^2}{n^2-1}\right)}-1\right)$$

O in water : n~1.33. E_{th} = 264 keV for e[±] and 486 MeV for p

• Intensity of the radiation can be calculated thanks to Maxwell equations

$$\frac{d^{2}\varepsilon}{d(\hbar\omega)dx} = \hbar\omega \frac{Z^{2}\alpha}{\hbar c} \left(1 - \frac{1}{n^{2}\beta^{2}}\right)$$

O where ϵ is the energy emitted by photons of energy $\hbar\omega$ and Z the charge of the particle

O by dividing by $\hbar\omega$ one obtains the number of photons

 \bullet high energy e^ produce ~220 photons/cm in water and ~30/m in the air

• This effect exists in all material but is negligible compared to ionisation

O proton with E_{kin} = 1 GeV passing through 1 cm water β =p/E ≈ 0.875; cosθ = 1/nβ = 0.859 → θ_C = 30.8° d²N/(dEdx) = 370 sin2θ_C eV⁻¹.cm⁻¹ ≈ 100 eV⁻¹.cm⁻¹ Δ E_{loss} = <E> d²N/(dEdx) Δ E Δ x = 2.5 eV x 100 eV⁻¹.cm⁻¹ x 5 eV ⁻¹ cm = 1.25 keV

• It is used for the particle identification, not for *dE/dx* measurements

- Most of light is emitted in the blue / ultraviolet region
- Needs to be considered when thinking about detecting Čerenkov photons

 ${\rm O}$ glass (photomultiplier window) absorbes UV light

Results in Physics, Vol. 39

(2022). 105771

The blue tint of the water that bathes the fuel assemblies in the storage pools is due to the Cherenkov effect. The electrons are produced by the Compton effect in the water by gamma rays from the radioactive disintegrations which occur in the fuel rods and which have come out of the sheaths encasing this fuel. © NRC

Material dependence of Čerenkov radiation

Medium	n	β_{thr}	θ _{max} [β=1]	Nγ [eV ⁻¹ cm ⁻¹]
Air	1.000283	0.9997	1.36	0.208
Isobutane	1.00127	0.9987	2.89	0.941
Water	1.33	0.752	41.2	160.8
Quartz	1.46	0.685	46.7	196.4

- Gases have a very high β_{thr} due to their low density and are suitable for electron identification
- Drawback : small number of Čerenkov photons, need large path in the material

Material dependence of Čerenkov radiation

Fig. 1. Left: detection of a TeV gamma-ray with an array of Cherenkov telescopes (not to scale). Right: example for shower images seen in the camera's focal plane, and the principle of stereoscopy.

Particles of different mass have different
 Čerenkov thresholds and reach the asymptotic
 region at different momenta

Also used in CTA to detect high energy cosmic rays

• If we know the momentum, we can identify the particle type up few GeV

O threshold Čerenkov detectors O ring imaging Čerenkov detectors, need to select material with suitable index of refraction for the desired momentum region

Transition radiation

• Transition radiation occurs when a relativistic charged particle passes the boundaries between two media with different refractive indices

• Some complex EM calculations show that : $\theta \leq 1/\gamma$ O angular distribution of the radiation strongly forward peaked plasma frequency [Interference; coherence condition] [from Dude model] O coherent radiation is generated only $D = \gamma c / \omega_p$ over a very small formation length O the number of photons emitted at each transition is very small $E = \frac{\alpha Z^2 \gamma \hbar \omega_P}{2}$ O the energy emitted at each transition is $\hbar\omega_{P} \sim 10-50 \text{ eV}$: X-rays O maximum energy of radiated photons $E_{max} = \gamma \hbar \omega_p$ limited by plasma frequency ... O e[±] are the only particles which will emit a transition radiation so are used to do e/π separation \bigcirc Typical values : D = 10 mm (d>D : absorption dominates) $CH_2: \hbar\omega_P \sim 20 \text{ eV}, \gamma = 10$ Air : *ħ*ω_P ~ 0.7 eV

Part 2 — Interactions of particles in matter Neutral particle interactions

- photons
- neutrons
- neutrinos

Photon detection

 γ -ray is an electromagnetic radiation at high frequency which has no mass, no electric charge.

 γ -rays travel at the speed of light of the medium they go through c/n, where c=299 792 458 ms⁻¹ is the speed of light in vacuum and n is the refractive index of the medium. They do not let track of their trajectory. They are not deviated by electromagnetic fields.

Photons are characterized by :

 $\begin{array}{l} \bigcirc \text{ their wave length : } \lambda[m] \text{ in vacuum} \\ \bigcirc \text{ their frequency : } v[\text{Hz}] \text{ ; } \lambda v = \text{c or } \lambda = \text{c T} \\ \bigcirc \text{ their energy : E = } hv = \frac{hc}{\lambda} \\ \text{ where h is the Planck constant : } h = 6.626 \times 10^{-34} J.s \end{array} \qquad E[eV] \approx \frac{1240}{\lambda[nm]}$

Photon flux in matter

Consider beam of monoenergetic γ with intensity I hitting an absorber. Despite many known mechanisms of interaction are possible, only three play an important role for radiation measurements :

- O photoelectric effect
- O Compton scattering
- O pair production
- O other processes :
 - Rayleigh Scattering ($\gamma A \neq \gamma A$; A = atom; coherent)
 - Thomson Scattering ($\gamma e \neq \gamma e$; elastic scattering)
 - Nuclear Photon Absorption ($\gamma N \rightarrow pN'/nN$) (the absorbed photon kicks off a neutron or a proton from the nucleus N)
 - Nuclear Resonance Scattering ($\gamma N \rightarrow N^* \rightarrow \gamma N$)
 - Delbruck Scattering ($\gamma N \neq \gamma N$)
 - Hadron Pair photo-production ($\gamma N \rightarrow h^+ h^- N$)

• A single interaction remove the photon from the beam

O all these processes lead to a partial or complete transfer of the energy of the photon to electrons
 O they lead to sudden and abrupt changes in the photons history, as they entirely disappear or are scattered with high angle
 O this behaviour is dramatically different from what happen to charged particles which gradually slow down by continuous and simultaneous interactions with many absorbing atoms

$$dI = -\mu I dx$$

$$I(x) = I_0 exp(-\mu x)$$

$$I_0 = \int_{-\pi} \int_{-\pi} \int_{-\pi} I(x) dx$$

with $\lambda = 1/\mu$ is the mean free path

 μ absorption coefficient (*cm*²/g)

Photo electric effect

• Mechanism : γ + atom \rightarrow atom + e

O occurs when a photon is absorbed by an inner shell electron causing the electron to gain sufficient energy to be ejected from the atom

- \bigcirc concerns essentially e⁻ from the K layer
- O after ejection of the inner shell electron, the missing electron must be replaced by an outer shell (higher energy) electron. For this to happen, the outer shell electrons must loose energy by emission of a characteristic X-ray and/or an Auger Electron.

• Energy :

O energy threshold (minimum required energy) equals to the binding energy of the orbital electron : $E_e = hv - E_b$

• **Cross-section is** characterized by discontinuities (absorption edges) as thresholds for photo-ionisation of various atomic levels are reached

$$\sigma_{Photoelectric} \approx 4\sqrt{2}\alpha^{4}Z^{5} \left(\frac{m_{e}c^{2}}{E_{\gamma}}\right)^{7/2} \sigma_{Thomson}$$

with $\sigma_{Thomson} = \frac{8}{3}\pi r_{e}^{2} \approx 665 mb$

Cross section (barns/atom)

Photon detection

• Mechanism : $\gamma + e \rightarrow \gamma' + e'$

O it is an inelastic scattering event in which the incident photon interacts with a single electron
O because the interaction is inelastic, the photon transfers some of its energy to the electron during the interaction
O the electron is ejected from its orbital

• Energy :

O after scattering, the energy is shared between the electron and the scattered photon minus the binding energy of the electron

$$E_{\gamma}' = \frac{E_{\gamma}}{1 + \epsilon \left(1 - \cos(\theta_{\gamma})\right)} \qquad \epsilon = \frac{E_{\gamma}}{m_e c^2}$$

O maximal energy transfer to the electron for q=p

$$E_{elec} = E_{\gamma} - E_{bind}$$

O corresponds to a maximal electron energy

$$E_{\gamma\prime}^{min} = E_{\gamma} \frac{1}{1+2\varepsilon} \qquad E_{elec}^{max} = E_{\gamma} - E_{\gamma\prime}^{min} = E_{\gamma} \frac{2\varepsilon}{1+2\varepsilon} < E_{\gamma}$$

• Cross-section :

 $\ensuremath{\bigcirc}$ decreases when the energy of the photon increases

Pair production

• Mechanism : γ + nucleus \rightarrow e⁻+e⁺ + nucleus

O a photon transitions to an electron/positron pair. The presence of a massive particle is required. This allows for conservation of energy and momentum as the massive particle is able to absorb some recoil energy

• Energy :

 \bigcirc occurs in the Coulombian field of the nucleus only if $E_{\gamma} > 2$

$$E_{\gamma} > 2m_e c^2 \left(1 \approx 1 MeV\right)$$

• Cross-section : $\approx 1 MeV$ O for E >> m_ec^2 it is independent of the energy :

$$\sigma_{pair} \approx \frac{7}{9} \left(4\alpha r_e^2 Z^2 ln \frac{183}{Z^{1/3}} \right) \approx \frac{7}{9} \frac{A}{N_A} \frac{1}{X_0}$$

• One introduces :

 $O \mu$: absorption coefficient,

 $O \lambda_{pair} = 1/\mu$. On average, a high energy g will convert into a e e pair after ~1 X₀

	ρ [g/cm3]	X ₀ [cm]
Н	0.071	865
С	2.27	18.8
Fe	7.87	1.76
Pb	11.35	0.56
Air	1.2x10 ⁻³	30 x10 ³

 $\lambda_{pair} = \frac{1}{7}X_0$

Interaction of photons with matter

These three effects create charged particles and/or transfer energy to charged particles which are then detected:

O photoelectric effect : dominant for E <100 keV
O Compton scattering : dominant for E ~1 MeV
O pair production : dominant for E >1 MeV

Absorption length of photons in matter

Photon cross-sections (Z and E dependence)

Absorption of a photon or an electron in a dense environment leads to the creation of an electromagnetic shower (calorimeter)

Neutron interaction in matter

The neutrons was discovered by Chadwick in 1932. Nuclear fission, induced by the capture of a slow neutron in ²³⁵U was discovered by Hahn and Strassman in 1939.

The fact that several neutrons emitted when fission takes place suggested that a self-sustaining chain reaction might be possible.

Under Fermi's direction, the world's first man-made nuclear reactor went critical on Decembe 2, 1942

In terms of interaction :

Neutrons can interact with a atomic nuclei through:

- Elastic scattering: the total kinetic energy is conserved – the energy loss by the neutron is equal to the kinetic energy of the recoil nucleus.

- Inelastic scattering: the nucleus absorbs some energy internally and is left to an excited state.
- (Thermal) neutron capture: the neutron is captured or absorbed by a nucleus, leading to a reaction such as (n,p), (n,2n), (n,a) or (n,g). The reaction changes the atomic number and/or atomic mass number of the struck nucleus.

Neutron interaction in matter

• Neutron detectors do not detect neutrons but products of neutron interactions !

Almost all detector types can be made neutron sensitive:

O external converter (radiator to go to low energy)O converter = detector

Neutron interaction in matter at high energy

Neutron detectors do not detect neutrons but products of neutron interactions !

At high energies (>100 MeV) they also behave like any hadron when meeting a nucleus

Fig. 1. Neutronproton total cross sections from this experiment and previous measurements with neutron beams above 4 GeV. Some p-p data are shown with dashed error bars for comparison.

Neutrino interaction in matter

Neutrinos are sensitive only to weak interaction
 Cross-sections are very small
 neutrino beams can be built from π decay

• To detect them, they need to interact

 $\left\{ \begin{array}{ll} \nu_{\ell} + n & \longrightarrow & \ell^{-} + p \\ \bar{\nu}_{\ell} + p & \longrightarrow & \ell^{+} + n \end{array} \right. \quad \text{with} \quad \begin{array}{l} \ell^{-} & = & e^{-}, \ \mu^{-}, \ \tau^{-} \\ \ell^{+} & = & e^{+}, \ \mu^{+}, \ \tau^{+} \end{array}$

• Typically, detection efficiencies are of the order of 10⁻¹⁷ in 1 *m* of iron

O detectors specialized for neutrinos need to be enormous (Km3net !!!!) and accept very high fluxes

Neutrino interaction in matter

In collider detectors, neutrinos are « seen » through the missing energy reconstructed in the Detector (but can also be DM ! Or any low-interacting particles!)

Part 3 – Particle detection A typical measurement block diagram

Typical measurement block diagram

- Ionisation provides a charge, need for an electrical field to collect the charge
- Light emission requires a mecanism to use the photons to provide electrons or positrons (photoelectric effect, Compton effect, pair creation, auger electrons)
- Hadronic collisions : charged particles providing ionisation, atomic reorganization (photons)
- Transition in a magnetic cavity \rightarrow current induction

Part 3 – Particle detection Gaseous ionization detectors

Gazeous detector principle : ionizing particle

- Primary ionisation O creation of electrons/ions pairs
- Movement of electrons and ions O moving in an electric field
- Multiplication (possibly) O avalanche in the gas (if field is strong enough)

- Charge collection
 Creation of the signal with a E Field
- Electronics reading O signal treatment

Part 3 – Particle detection Scintillation detectors

Molecular scale effects : the example of Liquid Argon

This molecular photon emission has a wavelength that is different from the ones between two atomic levels : liquid argon is transparent to it scintillation light

Competition between light emission and ionization

Multi-atomic scale effects : example of scintillation in a cristal

scintillation light to a charge or a current : the photomultiplier

Photoelectric effect in the material of the photocathode provide a charge which is accelerated in the field of the dynodes (avalanche = amplification)

Part 3 – Particle detection Semiconductor detectors

scintillation light to a charge or a current?

Photomultipliers

Silicon detectors

Photoelectric effect in the material provide a charge which is accelerated in the field of the dynodes (avalanche = amplification)

Photoelectric effect in the material provide a charge which is accelerated in the field of the depleted zone (avalanche = amplification)

ionisation to a current?

Silicon detectors

Ionisation in the material provide an e/hole that migrate in opposite direction. If the field in the junction is large enough, go to avalanche mode (amplification)

Part 3 – Particle detection Calorimeters

What is a calorimeter?

In nuclear and particle physics calorimetry means the detection of particles through their total absorption in a block of instrumented matter

Two types of calorimeters have been proposed :

Sampling calorimeters

Absorbers are used to initiate the shower and measurement gaps (Lar, scintillators, ...) are used to measure the effect of outcoming particles in the gap

$$E = \sum \Delta E$$

: ΛE.

Total absorption (homogeneous) calorimeters

The incoming particles are fully arrested in the calorimeter volumes and produce n = E/W scintillation light (W is the threshold to produce scintillation).

$$\frac{\sigma_E}{E} = \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{E/W}}$$

72
Interactions of particles through matter

Charged particle interaction as a function of its Energy

34. Passage of Particles Through Matter

The critical energy that triggers the radiative process (Bremsstrahlung) depends on the mass of the charged particle. For an electron it is about:

$$dE\sim \frac{2Z^2e^6}{3b^3m_e^2c^4}\gamma^2$$

So that light particles can have their energy loss dominated by radiation : few MeV electron do EM

Interactions of particles through matter

Photon interaction as a function of its Energy

High energy photon interaction is dominated by electron-positron pair creation and is higher at high Z

Calorimetric showers require two types of calorimeters

At high energy, photon and electron are mainly governed by bremsstrahlung and pair conversion while hadronic showers correspond mostly to interaction with the nuclei and the subsequent decay of the unstable hadrons produced.

$$\begin{array}{c} X_0 \sim \frac{A}{Z^2} \\ \lambda_{\rm int} \sim A^{1/3} \end{array} \end{array} \longrightarrow \begin{array}{c} \lambda_{\rm int} \\ \lambda_{\rm int} \sim A^{4/3} \end{array}$$

$$\lambda_{\rm int} \gg X_0$$

2 different calorimeters are required for EM and HAD showers.

Mean free path of a γ is 9/7 X_0 \qquad 76

20

Energy fraction deposited in first 5 X_0 (%)

30

10

e

EM showers of electrons and photons

Shower development depends on the material and can be characterised by the attenuation factor X_0

$$X_0 \;(\mathrm{g/cm^2}) \simeq \frac{716 \;\mathrm{g \; cm^{-2}}A}{Z(Z+1) \;\ln(287/\sqrt{Z})}$$

Electrons :

$$\langle E(x)\rangle = E_0 \ e^{-\frac{x}{X_0}}$$

Photons :

600

400

200

$$\langle I(x)\rangle = I_0 \ e^{-\frac{7}{9}\frac{x}{X_0}}$$

→ 10 GeV Y

--- 10 GeV e

<14.8%> ± 8.6%

 $<21.0\%>\pm6.4\%$

40

50

EM showers longitudinal development

EM showers lateral development

Opening angle:

- bremsstrahlung and pair production:

$$\left\langle \theta^2 \right\rangle \approx \left(\frac{m_e c^2}{E_e} \right)^2 = \frac{1}{\gamma^2}$$

- multiple coulomb scattering [Molière theory]

$$\langle \theta \rangle = \frac{E_s}{E_e} \sqrt{\frac{x}{X_0}}$$
 where $E_s = \sqrt{\frac{4\pi}{\alpha}} (m_e c^2) = 21.2 MeV$

Main contribution from low energy electrons as < θ > ~ 1/E_e, i.e. for electrons with E < Ec

Х

Lateral extension: $R = x \cdot \tan \theta \approx x \cdot \theta$, if θ small ...

EM shower lateral development

- Inner part is due to Coulomb's scattering of electron and positron
- Outer part is due to low energy γ produced in Compton's scattering, photo-electric effect etc.
- Predominant part after shower max especially in high Z absorbers
- The shower gets wider at larger depth
- An infinite cylinder of radius 2RM contains 95% of the shower

3D EM shower development

Hadronic showers

Hadronic interaction Cross section

 $\sigma_{Tot} = \sigma_{el} + \sigma_{inel}$ $\sigma_{el} \approx 10mb \qquad \sigma_{inel} \approx A^{2/3}$ $\sigma_{Tot} = \sigma_{tot}(pp)A^{2/3}$ where: $\sigma_{tot}(pp)$ increases with \sqrt{s}

Hadronic interaction length

$$\lambda_{\text{int}} = \frac{1}{\sigma_{tot}} \cdot n = \frac{A\rho}{\sigma_{pp}A^{2/3}N_A} \approx (35g/cm^2)A^{1/3}$$
$$N(x) = N(0)e^{-x/\lambda_{\text{int}}}$$

Hadronic showers and non-compensation

Hadronic showers produce neutral hadrons decaying to photons (h, π_0 , ...) so it is an heterogeneous shower with a fraction f_{em} collected from EM objects

$$\pi = f_{em} + (1 - f_{em})h$$

└ Comparing pion and electron showers:

$$\frac{e}{\pi} = \frac{e}{f_{em}e + (1-f_{em})h} = \frac{e}{h} \frac{1}{1 + f_{em}(e/h-1)}$$

Calorimeters can be:

- Overcompensating
- Undercompensating e
- Compensating

- e/h < 1
- e/h > 1 e/h = 1

But hadronic component is heterogenous (e.g. neutron) which also introduce fluctuations

Hadronic showers and non-compensation

Compensation:

 Tuning the neutron response using hydrogenous active material (L3 Uranium/gas calorimeter)

Compensation adjusting the sampling frequency

Impact of stochastic nature of the shower

Calbration:

– with a single cell to detect a whole shower, you have no other choice than affecting the most probable value of the measured distribution when you detect the same particle with the same energy at the same place

Resolution suffers from the stochastic nature of the shower : for instance the number of charges produced in the shower, the possible high energy photons that escaped the cell but also some parasitic effects (electronic noise, pileup and residual local non homogeneities in the construction of the detector)

XIII International Conference on Calorimetry in High Energy Physics (CALOR 2008)

ATLAS Lar Barrel testbeam data XIII International Conference on Calorimetry in High Energy Physics (CALOR 2008)

Impact of stochastic nature of the shower

Calbration:

 with a granular calorimeter, you measure the shower development (the stochasiticity) which gives handle to correct further the energy beyond the most probable value

- You can use shower shape variables with ML to improve resolution

Impact of stochastic nature of the shower

Calbration:

- a step further : using shower asymetries measurements

Part 3 – Particle detection Bolometers

Principle : convert energy of the incident radiation to heat
 O the incident power is absorbed by the right material
 O then measure the increase of temperature

 Bolometers can cover a large spectrum of Energy but they are in general specialized to a certain domain of wave length

 \bigcirc ionising or non-ionising particles \bigcirc energetic photons \rightarrow gamma

• Measurements

○ from eV to 100 GeV ○ order of magnitude of sensitivities : commonly until 1 mK, i.e 10^{-16} W (E = kT) but can go down to 10^{-18} W

O sensitivity : detection of a 100 W lamp at 300 000 km !

• Ability

Ο...

O Allow high resolution spectroscopy X, γ,α

O measurements of absolute mK (cosmological black body)

 \odot measurement of lifetime of very rare radio-isotopes from $10^{19}\, \hbox{\`a}\, 10^{26}\, \hbox{years}$

A bit of history

• 1881 : 1st bolometer S. Langley

 \bigcirc etymology :

- bolè = radiation, line, trajectory
 cf. discobolus, bolide, parabola, ballistics
- metron = measure

• 1903 : radioactivity and heat

O measurements by P. Curie and A. Laborde
 O sensitivity limit ≈10⁻⁴ W

Pierre Curie et André Laborde CR Acad. Sciences, mars 1903

SUR LA

CHALEUR DÉGAGÉE SPONTANÉMENT

PAR LES SELS DE RADIUM.

En commun avec A. LABORDE.

Comptes rendus de l'Académie des Sciences, t. CXXXVI. p. 673, séance du 16 mars 1903.

Nous avons constaté que les sels de radium dégagent de la chaleur d'une manière continue.

Un couple thermo-électrique, fer-constantan, dont une des sondures est entourée de chlorure de baryum radifère, et dont l'autre est entourée de chlorure de baryum pur, accuse en effet une différence de température entre les deux corps.

Notebook of P. Curie and A. Laborde

1 amin 19.80 m pa Mar 30 17,81 18,65 17,81 17,12 18,35 18,15 12,95 0,20 Vase at agitaten lınk

Part 4 – Measurement of particle properties Track and charge reconstruction

Track and Charge reconstruction: challenges

Part 4 – Measurement of particle properties Particle identification

A general multidetector allows identification of high energy particles

$Part \ 5- {\sf Quantum \ sensors}$

Quantum Sensors for High Energy Physics arXiv:2311.01930 [hep-ex]

A new era is opening

4	Pros	pective Quantum Sensing Technologies	14
	4.1	Atom interferometry	14
	4.2	Atomic, nuclear, and molecular clocks and optical cavities	15
	4.3	SNSPDs	17
	4.4	Superconducting qubits	18
	4.5	Continuous variables quantum sensors and amplifiers	20
	4.6	Superconducting cavities	20
	4.7	Qubit-Based Pair-Breaking Detectors	21
		471 Overture conscitence detectors	01
		4.7.1 Quantum capacitance detectors	21
		4.7.2 Superconducting Quasiparticle-Amplifying Transmon	21
	4.8	Kinetic inductance detectors	21
	4.9	Transition edge sensors	22
	4.10	Spin sensors and NMR	22
	4.11	Superfluid helium sensors	23
	4.12	Optomechanics	24
	4.13	Ouantum networks and long-distance quantum coherence	24
		4.13.1 Optical interferometry and precision astrometry	24
		4.13.2 Dark matter detection and quantum networked sensors	26
	4.14	Ouantum materials	26

