Search for dark photons in Higgs boson production via vector boson fusion in proton-proton collisions at $\sqrt{s}=13~{
m TeV}$

Rui Miranda

Universidade do Porto

up202004629@outlook.com

July 10, 2024

Rui Miranda (FCUP)

Dark photon search

July 10, 2024

VBF production and Higgs decays

- jets with high $\Delta\eta_{jj}$ and high dijet m_{jj}
- λ and λ_D with high p_T
- λ_D detected indirectly through p_T^{miss}

The CMS detector

• $\sqrt{s} = 13 \, TeV$ and $\mathcal{L} = 130 \, fb^{-1}$

イロト 不得 トイヨト イヨト

- B = 3.8T
- Tracker that detects up to $|\eta| < 2.5$
- EM calorimeter and Hadron calorimenter that detects up to $|\eta| <$ 3.0
- Forward calorimeters extend detection up until $|\eta| < 5.0$
- Muon chambers detect up to $|\eta| < 2.4$
- Two level trigger system
- L1 100*kHz* in 4µs
- HLT 1kHz before data storage

Processes	Program	
VBF, ggH, $t\bar{t}\gamma$, VVV, WZ, WW, ZZ	POWHEGv2	
W+jets, Z+jets, γ + jets, $W(I\nu)$ + γ , Z + γ	MADGRAPH5aMC@NLO	
$H \rightarrow \gamma \gamma_D$, Parton Shower, Hadronization	Pythia	

Table: Monte Carlo Simulations

- Simulation for H: $m_H = 125, 150, 200, 300, 500, 800, 1000 GeV$
- All events are processed by *Geant4*. Pileup interactions added with a distribution that matches observed results (23 for 2016, 32 for 2017-18)

- \bullet Information from subdetectors \rightarrow Reconstruction and identification
- Jets analysed: $p_T > 30 \, GeV$ and $|\eta| < 4.7$
- Pileup mitigated by charged-hadron subtraction technique
- Electrons reconstructed from ECAL energy clusters, with with $|\eta|<2.5$ and $p_T>10 GeV$
- Muons reconstructed from tracks in muon system, with $|\eta| < 2.4$ and $p_T > 10 {\it GeV}$
- Photons reconstructed from ECAL energy deposits, with $|\eta| < 1.47$ and $p_T > 80 GeV$
- Isolated photon: $\sum p_T$ within cone of $\Delta R < 0.3$ below some bound
- Pixel-seed electron veto to exclude electrons misidentified as photons

Event selection

Data-taking year	2016	2017/2018		
Trigger	$VBF+\gamma$	Single-photon	p_{T}^{miss}	
Number of photons		≥ 1 photon		
p_{T}^{γ}	$>\!\!80{ m GeV}$	>230 GeV	> 80 GeV	
Number of leptons		0		
$p_{\rm T}^{\rm j_1}, p_{\rm T}^{\rm j_2}$		> 50 GeV		
$p_{\rm T}^{\rm miss}$	> 100 GeV	> 140 GeV	> 140 GeV	
Jet counting		2-5		
m_{ii}		$>500\mathrm{GeV}$		
$ \Delta \eta_{ii} $		>3.0		
$\eta_{i_1}\eta_{i_2}$		<0		
$\Delta \phi_{\text{jet}, \vec{p}_{\text{T}}^{\text{miss}}}$		>1.0 radians		
z_{γ}^{*}		< 0.6		
$p_{\rm T}^{\rm tot}$		< 150 GeV		

Figure: Signal Region Criteria

$$z_{\gamma}^{*}\equiv\left|rac{\eta_{\gamma}-ig(\eta_{j1}+\eta_{j2}ig)/2}{\left|\Delta\eta_{jj}
ight|}
ight.$$

Rui Miranda (FCUP)

July 10, 2024

イロト イヨト イヨト イヨト

- Main: $W(e\nu) + jets$, where the γ is a misidentified e
- Larger p_T^{miss} , $Z(\nu\bar{\nu}) + \gamma/W(l\nu) + \gamma$
- $\gamma + jets$, with mismeasured p_T^{miss}
- Processes of electroweak are increasingly important with higher m_{jj}
- Normalized with control regions
- Minor contributions (VVV, VV, tt

 ^τ

 ^γ, tγ) simulated with Monte Carlo methods.
- Normalization of pathological event reconstruction with mismeasured γ energy and of hadron as photon misidentification

Control Region	Modifications
$W(e\nu) + jets$	e selected, no γ found.
	e used in place of signal γ to build kinematic variables.
$Z(\mu^+\mu^-) + \gamma$	Two μ selected with a γ .
	The $\Delta \phi_{jet, p_T^{miss}}$ requirement not considered.
	μ added to $ar{m{ ho}}_{T}^{ extsf{miss}}$ to emulate the signal topology.
$W(\mu\nu) + \gamma$	μ selected with a $\gamma.$
	μ added to $ec{m{ m m m P}}_T^{ m miss}$ to emulate the signal topology.
$\gamma + jets$	$\Delta \phi_{ ext{jet}, p_T^{ ext{miss}}} < 0.5.$

Table: Control Regions

æ

$$m_{T} = \sqrt{2 p_{T}^{\mathsf{miss}} p_{T}^{\gamma} \left[1 - \cos \left(\Delta \phi(ec{p}_{T}^{\mathsf{miss}}, ec{p}_{T}^{\gamma})
ight)
ight]}$$

Region	Bins	$m_{\rm T}$ range (GeV)
SR, $m_{ii} < 1500 \text{GeV}$	6	[0, 30, 60, 90, 170, 250, ∞]
SR, $m_{jj} \ge 1500 \text{GeV}$	6	[0, 30, 60, 90, 170, 250, ∞]
$W(ev) + jets CR, m_{jj} < 1500 GeV$	3	[0, 90, 250, ∞]
$W(e\nu) + jets CR, m_{jj} \ge 1500 GeV$	3	<i>[</i> 0 <i>,</i> 90 <i>,</i> 250 <i>,</i> ∞ <i>]</i>
$Z(\mu^+\mu^-) + \gamma CR, \tilde{m_{ii}} < 1500 \text{GeV}$	1	$[0, \infty]$
$Z(\mu^{+}\mu^{-}) + \gamma \text{ CR}, m_{ij} \ge 1500 \text{ GeV}$	1	$[0, \infty]$
$W(\mu\nu) + \gamma CR$, $m_{ij} \approx 1500 \text{GeV}$	1	$[0, \infty]$
$W(\mu\nu) + \gamma CR, m_{ij} \ge 1500 \text{GeV}$	1	$[0, \infty]$
$\gamma + \text{jets CR}, m_{ii} < 1500 \text{GeV}$	1	[0, ∞]
$\gamma + \text{jets CR}, m_{ii} \geq 1500 \text{GeV}$	1	$[0, \infty]$

July 10, 2024

イロト イヨト イヨト イヨト

Source of uncortainty	Impact for scenario	Impact for scenario	
Source of uncertainty	with signal (fb)	without signal (fb)	
Integrated luminosity	3.3	0.6	
Lepton and trigger measurements	17	7.7	
Jet energy scale and resolution	24	19	
Pileup	9.7	8.5	
Background normalization	25	18	
Theory	6.0	3.0	
Simulation sample size	36	36	
Total systematic uncertainty	54	46	
Statistical uncertainty	58	48	
Total uncertainty	79	66	

- With signal: $m_H = 125 \, GeV, \sigma = 0.05 \sigma_{SM}$
- No signal: $\sigma = 0$

Image: A matrix and a matrix

Results

イロト イヨト イヨト イヨト

æ

	SR	$W(e\nu) + jets CR$	$Z(\mu^+\mu^-) + \gamma CR$	$W(\mu\nu) + \gamma CR$	γ + jets CR
W + jets	250 ± 17	10500 ± 100			180 ± 37
$W(\ell \nu) + \gamma$	98 ± 11	240 ± 36	_	190 ± 18	76 ± 8
$Z + \gamma$	98 ± 18	6.8 ± 1.5	25 ± 4	1.7 ± 0.4	46 ± 8
$\gamma + jets$	230 ± 22	12 ± 4	_	9.5 ± 2.3	1400 ± 58
Mism. γ	34 ± 15	_	_	_	_
Z + jets	41 ± 6	100 ± 10	_	6.3 ± 0.6	26 ± 3
Nonprompt	20 ± 4	1.1 ± 0.2	1.2 ± 0.2	4.4 ± 0.9	62 ± 13
Top quark	18 ± 5	16 ± 4	0.3 ± 0.1	30 ± 7	22 ± 5
VV	6.9 ± 1.0	200 ± 9	0.3 ± 0.3	4.4 ± 0.9	5.7 ± 0.5
VVV	3.1 ± 0.5	7.6 ± 1.0	_	8.1 ± 1.1	3.6 ± 0.5
Total background	800 ± 25	11100 ± 100	27 ± 4	250 ± 16	1800 ± 43
Data	801	11091	27	253	1830
$qqH_{125}(\gamma\gamma_D)$	50.5 ± 7.4	1.7 ± 0.3	_	_	4.5 ± 0.4
$ggH_{125}(\gamma\gamma_D)$	30.6 ± 14.3	1.2 ± 0.6	_	_	6.9 ± 2.9

イロト イヨト イヨト イヨト

æ

- Limits σ_{VBF} up to 160 fb(2fb) for $m_H = 125 GeV(1000 GeV)$
- Upper for limit for branching ratio of 3.5% for $m_H = 125 GeV$

The End

Rui Miranda (FCUP)

Dark photon search

July 10, 2024

< □ > < □ > < □ > < □ > < □ >