Probing the SM: Top quarks and beyond

Michele Gallinaro LIP Lisbon March 26, 2024

✓ Top quarks as window to New Physics
 ✓ Top-Higgs associated production
 ✓ Top quark signatures in SUSY
 ✓ Top and Dark Matter

Theory cross sections: TeV vs LHC

Collider	$\sigma_{ m tot}$ [pb]	scales [pb]	PDF [pb]	
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)	
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4\%)	+4.7(2.7%) -4.8(2.8\%)	
LHC 8 TeV	245.8	+6.2(2.5%) - $8.4(3.4\%)$	+6.2(2.5%) -6.4(2.6%)	
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)	

Including NNLO+NNLL approximations PRL 110, 252004 (2013) (M. Czakon et al.)

Top cross section at 7/8 vs 13 TeV

- LHC collisions started at 7/8 TeV
- LHC design is at 14 TeV
- Top cross section drops faster than background processes at lower sqrt{s}
 - top σ (7TeV) = 172 pb
 - top σ (8TeV) = 246 pb
 - top σ(13TeV)= 832 pb
- Background is more "flat"

Cross section measurement

Dilepton channel

EPJC 79(2019)368

- Branching ratio (BR) ~5%
- Background: small
- Clean final state
 - two leptons + ≥2 jets + MET
 - kinematic variables
- Signal visible w/without b-tagging
- Main systematics: JES, lepton ID, (pileup, b-tag, signal modeling)

Cross section: multi-dimensional fit

CMS Preliminary

scale uncertainty

CMS, dilepton eµ

L_{se} = 43 pb⁻¹, 50 ns

PRL 116 (2016) 052002

CMS, dilepton eu *

scale \oplus PDF $\oplus \alpha_e$ uncertainty

NNLO+NNLL PRL 110 (2013) 252004

 $m_{top} = 172.5 \text{ GeV}, \ \alpha_s(M_{\star}) = 0.118 \pm 0.001$

σ_{ut} summary, √s = 13 TeV

total stat

σ_r ± (stat) ± (syst) ± (lumi)

746 ± 58 ± 53 ± 36 pb

793 ± 8 ± 38 ± 21 pb

July 2016

JHEP 09(2017)051

- Lepton+jet final state
- Keep selection as inclusive as possible
- Categorize events according to (b-) jet multiplicity
 - high-purity vs background dominated
 - Constrain systematics (JES, ISR/FSR, modeling, etc)
- Combined fit of M_{lb} to signal and backgrounds
- Precise cross section measurement

All hadronic

EPJC 79(2019)313

- BR ~46%
- Background: large
- Selection:
 - ≥6 jets + kinematical selection
 - require 2 b-tags
- Main backgrounds:
 - hadronic multi-jet
 - same selection without b-tag

M. Gallinaro - "Top quarks as probe to New Physics" - Physics@LHC - March 26, 2024 ^{meco} [GeV]

CMS

35.9 fb⁻¹ (13 TeV)

Cross sections

Differential cross section

EPJC 73(2013) 2339, arXiv:1610.04191, TOP-20-001, TOP-20-006

- Measure differential cross section
 - Test perturbative QCD
 - Test BSM scenarios (Z' decays, etc)
- Cross sections measured as a function of p_T , η , invariant mass of the final state leptons, top quarks, ttbar system, etc.
- Good agreement with expectations

Differential cross section (cont.)

PRD 97(2018)112003, JHEP 02(2019)149

- Correct for detector effects and acceptances
- Softer top p_T (CMS), agreement in ATLAS at high p_T
 - Due to momentum reshuffling, P.Nason, cern.ch/event/301787
 - FSR shower changes mass of final state partons. light partons can build sizeable mass, and t/tbar do not radiate
 - short term solution: consider difference as uncertainty
- Impact on ttH/SUSY/etc searches, tails of ttbar events
- Measure ttbar invariant mass
 - Rate/shape reproduced within uncertainties

Multi-differential cross section

TOP-20-006

- Multi-differential cross section as a function of top and ttbar kinematics, decay products and additional jets
- Sensitive to SM parameters m_t and α_s
- Total uncertainty reduced by a factor of ~2 wrt previous analyses

Top quarks as window to BSM physics

Top quark affects stability of Higgs mass

Contributions grow with Λ :

 $m^2 = m_0^2 + g^2 \Lambda^2$

Cancellation?

Solutions:

- Naturalness: There is no problem
- Weakly-coupled model at TeV scale
 - -New particles to cancel SM divergences
 - -Top partners: new scalar/vectors coupled to top, exotic top decays
- Strongly-coupled model at TeV scale
 - ttbar resonances, bound states, 4-top production, etc.
- New space-time structure
 - Introduce extra space dimensions to lower Planck scale cutoff to ~1TeV
 - KK excitations

Role of top quark physics

- Top quark physics after the Higgs discovery
 - Heavy particle, preferential coupling?
 - Special role in EWSB mechanism?
 - Does it play a role in non-SM physics?
 - Are the couplings affected?
 - Main background for many NP searches
- Monitoring of production mechanism
- Is there any sign of NP in top production/decay?

Role of top quark physics

nclusive tī

- Top quark physics after the Higgs discovery
 - Heavy particle, preferential coupling?
 - Special role in EWSB mechanism?
 - Does it play a role in non-SM physics?
 - Are the couplings affected?
 - Main background for many NP searches
- Monitoring of production mechanism
- Is there any sign of NP in top production/decay?

Study characteristics

Regions hard to explore

Top quark decays

Differential cross section

CMS-TOP-20-006

- Measure differential cross section
 - Test perturbative QCD
 - Test BSM scenarios (Z' decays, etc)
- Cross sections measured as a function of p_T , η , invariant mass of the final state leptons, top quarks, ttbar system, etc.
- Good agreement with expectations

Probing the Wtb vertex

Dileptons with taus

- cross section measurement including τs
- Includes only 3rd generation quarks/leptons
- Syst unc: tauld, fakes

Channel	Signature	BR
Dilepton(e/µ)	ee,μμ,eμ + 2 <i>b</i> -jets	4/81
Single lepton	e,μ + jets + 2 <i>b</i> -jets	24/81
All-hadronic	jets + 2 <i>b</i> -jets	36/81
Tau dilepton	<i>e</i> τ, μτ +2 <i>b</i> -jets	4/81
Tau+jets	τ + jets + 2 <i>b</i> -jets	12/81

- If top quark plays special role in EWK symmetry breaking, couplings to W may change
- Charged Higgs may alter coupling to W
- Search for final states with taus: charged Higgs

Looking at tau decays

W boson branching fractions

- Precise measurement of the W boson BRs (electrons, muons, taus)
 - Use events with WW and W+jets
 - Multiple categories used
 - Maximum likelihood simultaneous fitting of templates to data in each category

• Most precise determination of $B(W \rightarrow I_V)$ from LEP has 2.6 σ deviation from LFU

Lepton Flavour Universality

Resolving an old discrepancy from LEP

How does a top quark decay?

$$t \xrightarrow{V_{tb}} b$$

- almost always t→Wb (i.e. V_{tb}~1)
- lifetime is short, and it decays before hadronizing
- the W is real:
 - − can decay W→Iv (I=e,µ,τ), BR~1/9 per lepton
 - can decay W→qq, BR~2/3

Cross section in the R measurement

N.Cim. B125(2010)983, PLB 736(2014)33

Top quark mass

- Top is the only fermion with the mass of the order of EWSB scale
- Discovered Higgs boson fits well with precise determinations of m_W and m_{top}
- Other properties (EWK coupling, production asymmetries, etc.) are predicted by SM
- Precise measurements could reveal breakdown of SM

Precise mass measurement

arXiv:1509.04044, EPJC78(2018)891

Top quark mass

CMS-TOP-20-008

- Updated measurement (I+jets ch.)
- Likelihood method (mt^{fit}, mW^{reco}, mlb^{reco}/mt^{fit}, Rbq^{reco})
- In-situ constraints via nuisance parameters
- Main systematics: b-flavour component of JEC, FSR

Top quark mass results

W boson polarization

arXiv:1612.02577, PRD 93(2016)052007

- Properties of Wtb vertex in SM is characterized by V-A structure
- W bosons can be produced with left-handed, right-handed, or longitudinal polarization
 - Fractions of polarization states are well predicted
- Can probe by measuring the angular distributions of the W boson decay products
- New physics could alter the polarization

Spin correlation

PRD 100(2019)072002, ATLAS-CONF-2018-027

Top quark produced are not polarized

- ...but spins between quark and anti-quark are correlated
- Top quark decays before spins decorrelate
 - It decays before hadronization (τ ~10⁻²⁵ s) ⇒ spin information transmitted to decay products
 - No need to reconstruct full ttbar system
- Spin correlation depends on production mode
- It may differ from SM expectations
 - Decays to charged Higgs and b quark (t \rightarrow H⁺b)
 - Other BSM scenarios

How else is Top produced?

PRD102(2009)182003, PRD81(2010)054028

Single top quark production

Probing top quark production

Differential measurements

- Testing QCD, measuring properties, searching for new physics, ...
- Function of kinematics, global variables, associated production
- Increased sensitivity: top quark pairs produced at rest

 $-\sigma$ (M_{tt}>1 TeV at 13 TeV) =8 x σ (M_{tt}>1 at 8 TeV)

 \Rightarrow Unique opportunity to probe boosted production at 13 TeV

Boosted topology

JHEP 1209(2012)029, TOP-16-013, PRL 124(2020) 202001

- At high energy, particles produced beyond threshold
- All-hadronic topology
 - Top p_T boosted, jets are collimated
 - Decay products and FSR collected in a "fat" jet
- Look at jet substructure
- Measure mass (no neutrinos)

M. Gallinaro - "Top guarks as probe to New Physics" - Physics@LHC - March 26, 2024

300

150

100

50

150

100

200

Leading jet mass (GeV)

250

Boosted topology

 In many models there is high potential to discover new physics in the top sector in search for heavy resonances

$$pp \to X \to t\bar{t}$$

• Simple approach to merge neighboring jets

- At LHC energy, EWK scale particles produced beyond threshold
- · Jets are highly collimated
- Decay products and FSR collected in a fat jet

Jet/Event selection

- Locate hadronic energy deposit in detector by choosing initial jet finding algorithm
- Impose jet selection cuts on fat jet
 - Recombine jet constituents with new algorithm
 - Filtering: recombine n sub-jets min d(i,j)
 - Trimming: recombine sub-jets with min $\ensuremath{p_{\text{T}}}$
- Minimum distance between jets is R

UE, ISR, Pile-up, hard interaction

Top quark pair resonance

CMS-B2G-17-017, EPJC78(2018)565

ttbar+Higgs

- ttbar produced in association with H
 - -ttbar is a "clean" tag
- direct measurement of Higgs couplings

ttbar+heavy flavour

arXiv:1411.5621, PLB776(2018)355

- Study rate of ttbb: $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$
- Anomalous tt+jets could signal BSM final states
- First direct measurement of typical bkg to top-Higgs coupling
 - Irreducible non-resonant bkg from ttbb
- Improved theoretical understanding of ttH(bb) crucial to ttH and NP searches

$$\sigma_{ ext{t\bar{t}b}ar{b}}/\sigma_{ ext{t\bar{t}jj}} = 0.022 \pm 0.003 \, (ext{stat}) \pm 0.005 \, (ext{syst})$$

$$\sigma$$
(ttbb)= 4.0 \pm 0.6 (stat) \pm 1.3 (syst) pb

ttbar+heavy flavour

arXiv:1411.5621, PLB776(2018)355

- Study rate of ttbb:
- $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$
- Anomalous tt+jets could signal BSM final states
- direct measurement of bkg to top-Higgs coupling
 - Irreducible non-resonant bkg from ttbb
- Improved theoretical understanding of ttH(bb) crucial to ttH and NP searches

Higgs couplings to top quarks

PRL 120(2018)231801, arXiv:1806:00242

- Direct study of Top-Higgs Yukawa coupling
- Explore all accessible Higgs decay modes
- Independent analysis of different final states (WW, ZZ, γγ, ττ, bb)

Event selection

pp

- Improve sensitivity thanks to progress in data analysis strategies that use advanced algorithms
- Analysis workflow more efficient thanks to compressed data format

Observation of ttH

PRL 120(2018)231801, arXiv:1806:00242

- Use several event categories
- Establishes directly tree-level coupling to an up-type quark

ttH/Z with boosted Z/H

CMS-TOP-21-003

Consistency with SM

JHEP 08(2016)45, CMS-HIG-15-002, ATLAS-CONF-2015-044

VBF+VH: boson in production ggF+ttH: fermions in production

ttV production (V=γ,W,Z)

- Large datasets give access to rare tt+W and tt+Z processes
- ttZ: direct probe of top-Z coupling (new physics?)
- ttW: important background to NP searches

- Use multi-lepton final states
 - -2 same-sign charge leptons, 3 or 4 lepton final states

ttV production (V=γ,W,Z)

arXiv:1808.02913, JHEP08(2018)011, arXiv:2201.07301

Top-Z coupling

PRL 122(2019)132003

Flavor Changing Neutral Currents

- FCNC: top couples to light quarks (u/c) and neutral bosons (γ,Z,H,g)
- Forbidden at tree level in SM
- Very small rates predicted
- Deviations would give hint for NP

Process	\mathbf{SM}	2 HDM(FV)	2HDM(FC)	MSSM	RPV	\mathbf{RS}
$t \to Z u$	$7 imes 10^{-17}$	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to g u$	4×10^{-14}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t \rightarrow \gamma u$	4×10^{-16}	_	_	$\leq 10^{-8}$	$\leq 10^{-9}$	-
$t \to \gamma c$	$5 imes 10^{-14}$	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \to h u$	$2 imes 10^{-17}$	$6 imes 10^{-6}$	_	$\leq 10^{-5}$	$\leq 10^{-9}$	-
$t \to hc$	3×10^{-15}	$2 imes 10^{-3}$	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

Flavor Changing Neutral Currents

- Expect small signal from SM
- ...but signal may be large in BSM models

Top quarks and rare decays

arXiv:1711.02547, PLB779(2018)358, EPJC78(2018)140, PRL 121(2018)221802

- Heaviest fundamental particle
- Study naked quark, decays before hadronization
- Strongly interacting with EWK sector and Higgs
- Anomalous couplings: Wtb vertex may include BSM terms

Vector-like quarks

EPJC79(2019)364

- Predicted in many BSM models, aim to solve the hierarchy problem
 - Produced through strong interactions
 - left- and right-handed components with same quantum numbers
- VLQs can mix with SM quarks and modify the couplings to the Z/W/Higgs bosons
- Search for VLQ single and pair production
 - Most searches assume VLQs couple/decay to SM particles (bosons and 3rd generation quarks)
 - FCNC decays
- Busy events, a lot of top quarks, bottom quarks, leptons and jets in final state
 - Example: 2 tops in final state
 - use top/H/W/Z taggers to find hadronic decays

Vector-like quarks

EPJC79(2019)364

Scalar top quark

- SUSY is one plausible extension of the SM
- due to the heavy top quark, mass splitting between \tilde{t}_1 and \tilde{t}_2 can be large, such that the lighter stop \tilde{t}_1 can be even lighter than the top quark
- Decays dictated by mass spectrum of other SUSY particles

• Heavy stop:

Top and SUSY

arXiv:1603.02303, JHEP05(2020)032

 If SUSY exists and is responsible for solution of hierarchy problem, naturalness arguments suggest that SUSY partners of top quark (*stop*) may have mass close to m_{top} to cancel top quark loop contributions to Higgs mass

$$egin{aligned} & ilde{t} o t ilde{\chi}_1^0 o b W ilde{\chi}_1^0 \ ilde{t} o b ilde{\chi}_1^+ o b W ilde{\chi}_1^0 \end{aligned}$$
 "heavy"

- Small predicted cross section
 - for 175GeV: 40pb@8TeV
- Stop pair production: $t \bar{t} \tilde{\chi}_1^0 \tilde{\chi}_1^0$ -similar to ttbar lepton+jet and dilepton ch. -additional MET from neutralinos
- change in ttbar cross section

Top and SUSY

EPJC 74 (2014) 3109, arXiv:1603.02303, JHEP05(2020)032

 If SUSY exists and is responsible for solution of hierarchy problem, naturalness arguments suggest that SUSY partners of top quark (*stop*) may have mass close to m_{top} to cancel top quark loop contributions to Higgs mass

$$egin{aligned} & ilde{t} o t ilde{\chi}_1^0 o b W ilde{\chi}_1^0 \ ilde{t} o b ilde{\chi}_1^+ o b W ilde{\chi}_1^0 \end{aligned}$$
 "heavy' $& ilde{t} o b ilde{\chi}_1^+ o b W ilde{\chi}_1^0 \end{aligned}$ "light"

- Small predicted cross section
 - for 175GeV: 40pb@8TeV
- Stop pair production: $t\bar{t}\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ -similar to ttbar lepton+jet and dilepton ch. -additional MET from neutralinos
- change in ttbar cross section

Top cross section: dileptons

p

ť*

- Indirect searches
- SUSY models could produce final states very similar (with additional MET)

M. Gallinaro - "Top quarks as probe to New Physics" - Physics@LHC - March 26, 2024

χĩ

 $\tilde{\mathbf{X}}_{1}^{0}$

Multi-top production

arXiv:1605.03171, EPJC 80(2020)75, JHEP11(2021)118

- Production of 4 tops is an attractive scenario in a number of new physics models
- The SM cross section is 12fb@13TeV
- Use dilepton and lepton+jets final states
- Combination of kinematical variables and BDT
- Search for same-sign dileptons, or >2 leptons
- Consider multiple control- and search-regions defined by MET, hadronic energy, number of (b-) jets, and p_T of the leptons in the events
- Measure cross section: $\sigma = 12.6^{+5.8}_{-5.2}$ fb.

Multi-top production

arXiv:1605.03171, EPJC 80(2020)75, JHEP11(2021)118

- Production of 4 tops is an attractive scenario in a number of new physics models
- The SM cross section is 12fb@13TeV
- Use dilepton and lepton+jets final states
- Combination of kinematical variables and BDT
- Search for same-sign dileptons, or >2 leptons
- Consider multiple control- and search-regions defined by MET, hadronic energy, number of (b-) jets, and p_T of the leptons in the events
- Measure cross section: $\sigma = 12.6^{+5.8}_{-5.2}$ fb.
- Limits on Yukawa couplings: $|y_{
 m t}/y_{
 m t}^{
 m SM}| < 1.7$

Dark Matter + ttbar

EPJC 77(2017)845, JHEP 03(2019)141

- Search for DM + ttbar(→I+jets,all hadr.)
- Shape of MET distribution
- Signature: ttbar+MET
- Top-tagging categorization
- Signal events at large MET

Precision Proton Spectrometer

- Joint CMS and TOTEM project that aims at measuring the surviving scattered protons on both sides of CMS in standard running conditions
- Tracking and timing detectors inside the beam pipe at ~210m from IP5
- Approved (2014), exploratory phase in 2015, data taking started in 2016, pixels installed from 2017, full detectors in 2018

Exclusive top quark production

- Reconstruction of $t\bar{t}$ events is incomplete due to neutrinos (dileptons) etc.
- Exclusive production allows full reconstruction of $t\bar{t}$ kinematics from the leading protons with excellent momentum resolution

- Couplings of top quark to photons are small
- Process expected to be very sensitive to top quark anomalous couplings with the photon
- Anomalous production cross section or kinematical properties would provide hints for New Physics

Physics with forward protons

CMS-PAS-PRO-21-001

CT-PPS collected more than 110 $\rm fb^{-1}$ of data during Run-2

CMS-PAS-EXO-19-009

Search for anomalous Z/γ* central production with CT-PPS 2017 data (2% resolution on the missing mass)

CMS-PAS-TOP-21-007

Search for central exclusive production of top quark-antiquark pairs in proton-proton interactions (with tagged protons)

CMS-PAS-SMP-21-014

Search for anomalous high-mass $\gamma\gamma \rightarrow WW$ and ZZ with forward protons

LHC: from searches to precision

• A hadron collider at full throttle

- Reaching the energy limit
- In Run3 (2022+), collisions at 13.6 TeV (?)
- Large datasets (~300/fb expected in Run3)
- Moving from searches to precision measurements and rare processes
 - Top quarks and rare decays
 - Higgs couplings and rare decays
 - Anomalous couplings etc.
- Preparing for High-Luminosity (2028 and beyond) with improved detectors
 - Several technological challenges ahead as complexity increases

Rich and extensive set of results

Summary

- Top quarks are valuable probes of SM
- Excellent consistency but SM is incomplete
 - Extensions foresee existence of additional bosons
 - Searches for BSM bosons ongoing
- Dominant background for New Physics searches
- Due to large mass, top quarks may couple to heavy objects
- Deviations from SM may indicate New Physics
- More data and improved algorithms will enhance the sensitivity
 - Higgs, multi-top, boosted objects, SUSY, Dark matter, etc.