Statistics for HEP

Part 1: Probability and Statistics

Invited lectures, 12th Course on Physics of the LHC (LIP, Lisboa, Portugal)

Dr. Pietro Vischia pietro.vischia@cern.ch @pietrovischia

Supported by project RYC2021- 033305-I funded by

MINISTERIO DE CIENCIA E INNOVACIÓN

If you are reading this as a web page: have fun! If you are reading this as a PDF: please visit

https://www.hep.uniovi.es/vischia/persistent/2024-03-20-22_StatisticsAtCoursePhysicsLHC_vischia_part1.html

to get the version with working animations

Lecture 1 Probability and statistics

Practicalities

- Significantly restructured with respect to the past years
 - Lecture 1: Probability and Statistics (minus hypothesis testing)
 - Lecture 2: Machine Learning (and hypothesis testing)
- More detailed material in my twenty-hours intensive course
 - It may be useful if you tried out the exercises, at your pace!
- Many references here and there, and in the last slide
 - Try to read some of the referenced papers!
 - Unreferenced stuff copyrighted P. Vischia for inclusion in my (finally) upcoming textbook

Statistics answers questions

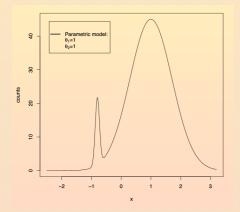
The quality of the answer depends on the quality of the question

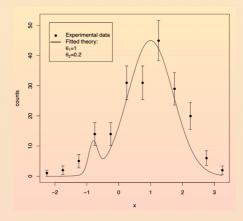
...in a mathematical way

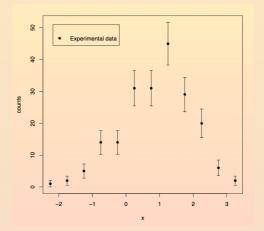
- Theory
 - Approximations
 - Free parameters

- Statistics
 - Estimate parameters
 - Quantify uncertainty
 - Test theories

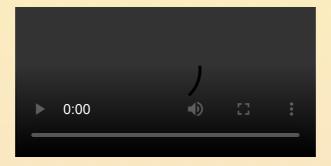
- Experiment
- Random fluctuations
- Mismeasurements (detector effects, etc)



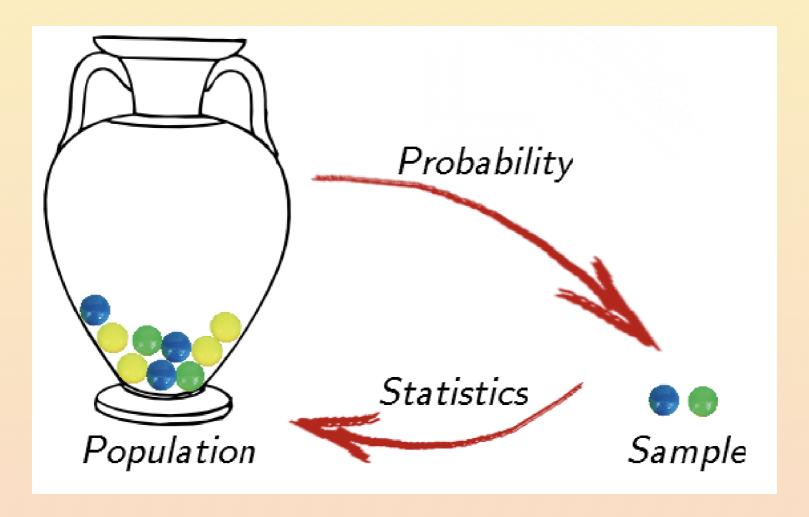




Why does Statistics work?



Probability and Statistics



Random Experiments

- ullet A well-defined procedure that produces an observable outcome x that is not perfectly known
- ullet is the set of all possible outcomes
- ullet S must be simple enough that we can tell whether $x \in S$ or not
- ullet If we obtain the outcome x, then we say the event defined by $x \in S$ has occurred

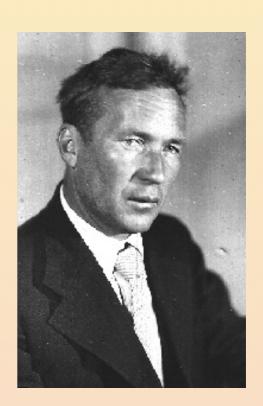
Repetitions of the experiment must happen under uniform conditions

Axiomatic definition of probability (Kolmogorov)

- (Ω, \mathcal{F}, P) : measure space
 - \circ a set Ω with associated field (σ -algebra) ${\mathcal F}$ and measure P
 - Define a random event $A \in \mathcal{F}$ (A is a subset of Ω)

then:

- 1. The probability of A is a real number $P(A) \geq 0$
- 2. If $A\cap B=\emptyset$, then P(A+B)=P(A)+P(B)
- 3. $P(\Omega) = 1$ (probability measures are finite)



Axiomatic definition for propositions (Cox and Jaynes)

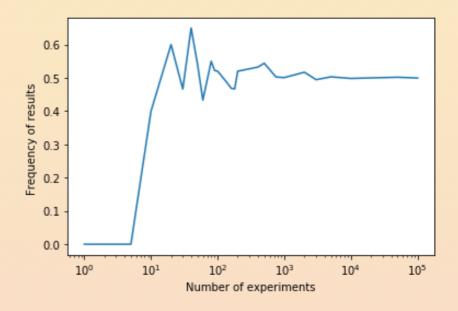
- Cox, 1946: start from reasonable premises about propositions
 - $\circ A|B$ is the plausibility of the proposition A given a related proposition B
 - $\circ \sim A$ the proposition not-A, i.e. answering "no" to "is A wholly true?"
 - $\circ F(x,y)$ is a function of two variables
 - \circ S(x) a function of one variable
- Two postulates concerning propositions
 - $\circ \ C \cdot B|A = F(C|B \cdot A, B|A)$
 - $\circ \ \sim V|A=S(B|A)$, i.e. $(B|A)^m+(\sim B|A)^m=1$
- Jaynes demonstrated that these axioms are formally equivalent to the Kolmogorov ones
 - Continuity as infinite states of knowledge rather than infinite subsets

Frequentist realization

- ullet Repeat an experiment N times, obtain n times the outcome X
- Probability as empirical limit

$$P(X) = \lim_{N o \infty} rac{n}{N}$$

Hand	Dis Inc tHands	Frequency	Probabili by	Cumula live probabili b	Odds	Ha.hema.lcal expression of absolute trequency
Royal fush	1	4	0.000154%	0.000154%	649,739 :1	(4 ₁)
Straight fush (excluding royal fush)	9	36	0.00139%	0.0014%	72,192 :1	$\binom{10}{1}\binom{4}{1}-\binom{4}{1}$
Four of a kind	156	624	0.0240%	0.0256%	4,164:1	$\binom{13}{1}\binom{12}{1}\binom{4}{1}$
Full house	156	3,744	0 1441%	017%	693 :1	$\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}$
Flush (excluding royal fush and straight flush)	1 277	5,108	0 1965%	0.367%	508:1	$\binom{13}{5}\binom{4}{1}-\binom{10}{1}\binom{4}{1}$
Straight (excluding royal fush and straight fush)	10	10,200	0.3925%	0.76%	254:1	$\binom{10}{1}\binom{4}{1}^5-\binom{10}{1}\binom{4}{1}$
Three of a kind	858	54,912	2 1128%	2.87%	46.3:1	$\binom{13}{1}\binom{4}{3}\binom{12}{2}\binom{4}{1}^2$
Two pair	858	123,552	4.7539%	7.52%	20.0:1	$\binom{13}{2}\binom{4}{2}^2\binom{11}{1}\binom{4}{1}$
One pak	2,860	1,098,240	42 2569%	49 9%	137:1	$\binom{13}{1}\binom{4}{2}\binom{12}{3}\binom{4}{1}^3$
No pair / High card	1,277	1,302,540	50 1177%	100%	0.995:1	$\left[\binom{13}{5}-10\right]\left[\binom{4}{1}^5-4\right]$
70 tol	7,462	2,598,960	100%	-	0:1	(52) 5)



Subjective ("Bayesian") realization

- ullet P(X) is the subjective degree of belief in the outcome of a random experiment (in X being true)
 - Update your degree of belief after an experiment
- De Finetti: operative definition, based on the concept of coherent bet
 - \circ Assume that if you bet on X, you win a fixed amount of money if X happens, and nothing (0) if X does not happen

$$P(X) := rac{ ext{The largest amount you are willing to bet}}{ ext{The amount you stand to win}}$$

• Coherence is when the bet is fair, i.e. it doesn't guarantee an average profit/loss

Dutch book

Book	Odds	Probability	Bet	Payout
Trump elected	Even (1 to 1)	1/(1+1)=0.5	20	20 + 20 = 40
Clinton elected	3 to 1	1/(1+3)=0.25	10	10 + 30 = 40
All outcomes		0.5 + 0.25 = 0.75	30	40

Game Theory

- Outcomes are 1s and 0s
- $P(A) = \{ \text{stake Skeptic needs to get 1 if A happens, 0 otherwise} \}$
- Forecaster offers bets (bookie, statistical model)
- Skeptic chooses bet
- Reality announces outcomes

```
Skeptic announces \mathcal{K}_0 \in \mathbb{R}.

FOR n = 1, 2, \ldots:
Forecaster announces p_n \in [0, 1].
Skeptic announces L_n \in \mathbb{R}.
Reality announces y_n \in \{0, 1\}.
\mathcal{K}_n := \mathcal{K}_{n-1} + L_n(y_n - p_n).
\mathbb{P}\left(\frac{\sum_{i=1}^n (y_i - p_i)}{n} \to 0\right) = 1
```

Random variables...

- Numeric label for each element in the space of possible outcomes
 - In Physics, we usually assume Nature is continuous, and discreteness comes from our experimental limitations
- Work with probability density functions (p.d.f.s) normalized with respect to the interval

$$f(X) := \lim_{\Delta X o 0} rac{P(X)}{\Delta X}$$

$$P(a < X < b) := \int_a^b f(X) dX$$

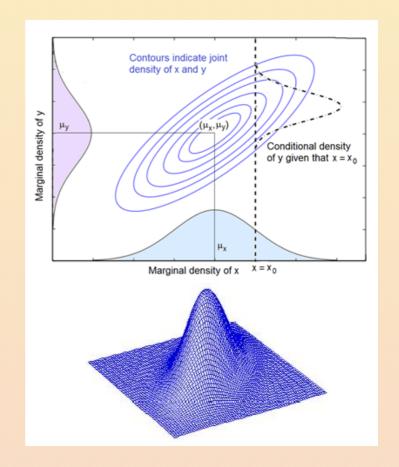
... in many dimensions

- Joint pdf for many variables: f(X,Y,...)
- Marginal pdf
 integrate over the uninteresting
 variables

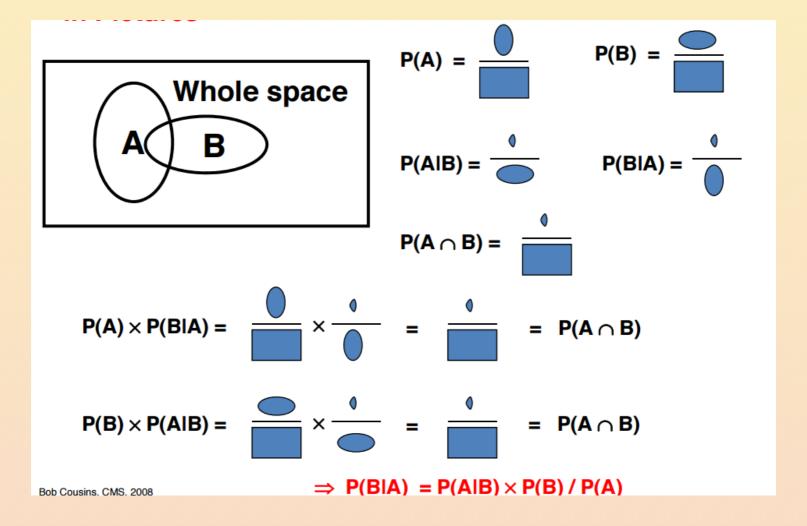
$$f_X(X) := \int f(X,Y)dY$$

Conditional pdf
fix the value of the uninteresting
variables

$$f(X|Y) := rac{f(X,Y)}{f_Y(Y)}$$



Bayes Theorem



Venn diagrams were also the basis of Kolmogorov approach (Jaynes, 2003)

Independence

- ullet Two events A and B are independent if P(AB)=P(A)P(B)
 - Can be assumed (e.g. assume that coin tosses are independent)
 - Can be derived (verifying that equality holds)

$$\circ~$$
 E.g. if $A=\{2,4,6\}, B=\{1,2,3,4\},$ we have $P(AB)=1/3=P(A)P(B)$

Two disjoint outcomes with positive probability cannot be independent

$$P(AB) = P(\emptyset) = 0 \neq P(A)P(B) > 0$$

Law of Total Probability

Bayes theorem is valid for any probability measure

$$P(A|B) := \frac{P(B|A)P(A)}{P(B)}$$

ullet Useful decomposition by partitioning S in disjoint sets A_i

$$\circ \cap A_i A_j = 0 \quad \forall i, j$$

$$\circ \cup_i A_i = S$$

$$P(B) = \sum_{i} P(B \cap A_i) = \sum_{i} P(B|A_i)P(A_i)$$

The Bayes theorem becomes

$$P(A|B) := rac{P(B|A)P(A)}{\sum_i P(B|A_i)P(A_i)}$$

A Word of Advice

$$P(AIB) = \frac{\emptyset}{\bigcirc}$$

$$P(BIA) = \frac{\emptyset}{\bigcirc}$$

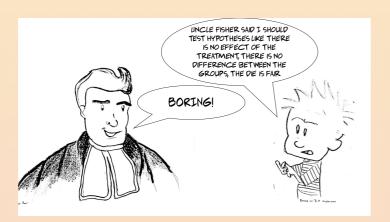
$$P(A|B) \neq P(B|A)$$

- ullet $P(have\,TOEFL|speak\,English)$ is very small, say <<1%
- ullet $P(speak\ English|have\ TOEFL)$, is (hopefully) $\sim 100\%$

Another Word of Advice

P(outcome), P(hypothesis)

- Frequentist probability (Fisher) always refers to outcomes in repeated experiments
 - $\circ \ P(hypothesis)$ is undefined
 - Criticism: statistical procedures rely on complicated constructions (pseudodata from hypotetical experiments)
- Bayesian probability assigns probabilities also to hypotheses
 - Statistical procedures intrinsically simpler
 - Criticism: subjectivity



Intrinsically different statements

- The probability for the hypothesis to be true, given the observed data I collected, is 80%
- The probability that, when sampling many times from the hypothesis, I would obtain pseudodata similar to the data I have observed is 80%

Some history

- Bayes' 1763 (posthumous) article explains the theorem in a game of pool
- A full system for subjective probabilities was (likely independently) developed and used by Laplace
- Laplace in a sense is the actual father of Bayesian statistics

Stigler (1996) and McGrayne (2011)

Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 23 / 87

The Obligatory COVID-19 slide

- Mortal disease
 - D: the patient is diseased (sick)
 - \circ H: the patient is healthy

A very good test

$$P(+|D) = 0.99$$

$$P(+|H) = 0.01$$

- Diagnostic test
 - +: the patient flags positive to the disease
 - —: the patient flags negative to the disease

You take the test and you flag positive: do you have the disease?

The Obligatory COVID-19 slide

- Mortal disease
 - D: the patient is diseased (sick)
 - \circ H: the patient is healthy

- Diagnostic test
 - +: the patient flags positive to the disease
 - —: the patient flags negative to the disease

A very good test

$$P(+|D) = 0.99$$

$$P(+|H) = 0.01$$

You take the test and you flag positive: do you have the disease?

$$P(D|+) = rac{P(+|D)P(D)}{P(+)} = rac{P(+|D)P(D)}{P(+|D)P(D)+P(+|H)P(H)}$$

- We need the incidence of the disease in the population, P(D)!
 - $\circ \ P(D) = 0.001$ (very rare disease): then P(D|+) = 0.0902, which is fairly small
 - $\circ \ P(D) = 0.01$ (only a factor 10 more likely): then P(D|+) = 0.50, which is pretty high
 - $\circ \ P(D) = 0.1: \text{then} \ P(D|+) = \underbrace{0.92, \text{almost certainty!}}_{\text{Pietro Vischia Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) 2024.03.20-22 --- 25 / 87}$

Naming Bayes

$$P(H|ec{X}) := rac{P(ec{X}|H)\pi(H)}{P(ec{X})}$$

- ullet \vec{X} , the vector of observed data
- ullet $P(ec{X}|H)$, the likelihood function, encoding the result of the experiment
- $\pi(H)$, the probability we assign to H before the experiment
- $P(\vec{X})$, the probability of the data
 - usually expressed using the law of total probability

$$\sum_i P(\vec{X}|H_i) = 1$$

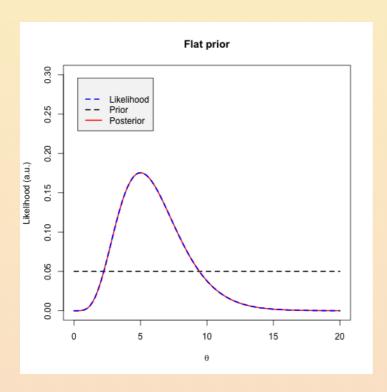
• often omitted when normalization is not important, i.e. searching for mode rather than integral

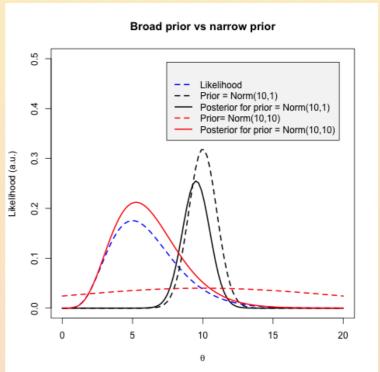
$$P(H|\vec{X}) \propto P(\vec{X}|H)\pi(H)$$

- ullet $P(H|ec{X})$, the posterior probability, after the experiment
 - \circ For a parametric H(heta), often written P(heta)

Prior, Likelihood, and Posterior

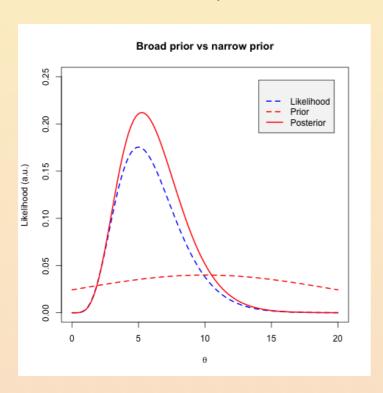
• Likelihood is always the same: usually it is the frequentist answer

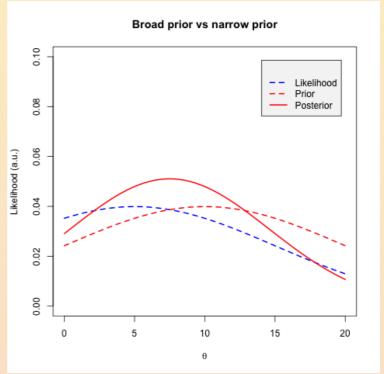




Prior, Likelihood, and Posterior

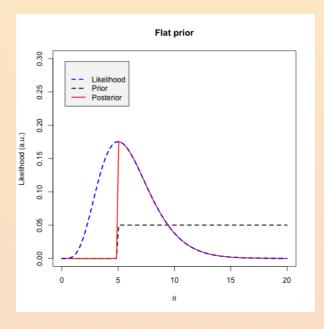
• Likelihood is always the same: usually it is the frequentist answer





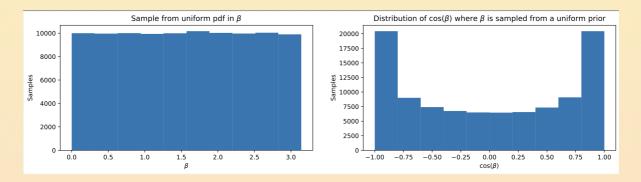
Priors to represent boundaries

- Can encode physical boundaries in the model
 - positivity of the mass of a particle
 - cross section is positive definite
- Strong assumptions on the model can hide weaknesses or anomalies
 - $\circ~$ a transition probability such as V_{tb} is defined in [0,1] only if you assume the standard model



Representing ignorance

Ignorance depends on the parameterization



Elicitation of expert opinion

- Jeffreys priors
 - Compute information on the parameter
 - Find a parameterization that keeps it constant

Information (Fisher)

- Information should increase with the number of observations
 - 2x data, 2x information (if data are independent)
- Information should be conditional on the hypothesis we are studying
 - $\circ \ I = I(\theta)$, irrelevant data should carry zero information on θ
- Information should be related to precision
 - Larger information should lead to better precision

Formal equivalence with other definitions (e.g. Shannon)

The Likelihood Principle

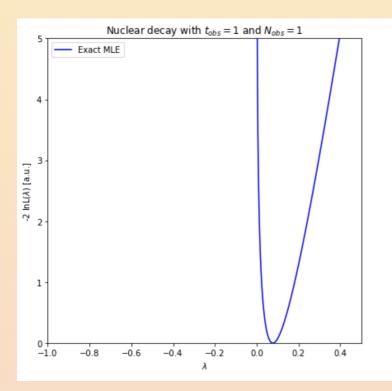
• Data sample \vec{x}_{obs}

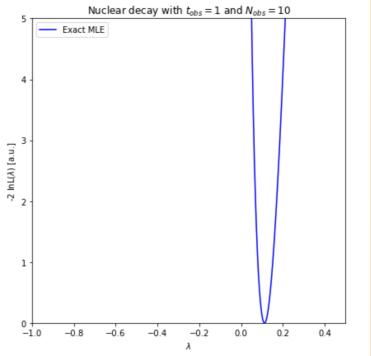
$$\mathcal{L}(ec{x}; heta) = P(ec{x}| heta)|_{ec{x}obs}$$

- The likelihood function $L(\vec x;\theta)$ contains all the information available in the data sample relevant for the estimation of θ
 - \circ Automatically satisfied by Bayesian statistics: $P(hetaert x) \propto L(ec x; heta) imes \pi(heta)$
 - Frequentist typically make inference in terms of hypothetical data (likelihood not the only source of information)
- Does randomness arise from our imperfect knowledge or is it an intrinsic property of Nature?

Likelihood and Fisher Information

- Define Fisher information via the curvature of the likelihood function, $\frac{\partial^2 \mathcal{L}(X;\theta)}{\partial \theta^2}$
 - Larger when there are more data
 - Conditional on the parameter studied
 - Larger when the spread is smaller (larger precision)





More formally...

- ullet Score: $S(X; heta)=rac{\partial}{\partial heta}lnL(X; heta)$
- Fisher information as variance of the score

$$I(heta) = E\Big[\Big(rac{\partial}{\partial heta} ln L(X; heta)\Big)^2 | heta_{true}\Big] = \int \Big(rac{\partial}{\partial heta} ln f(x| heta)\Big)^2 f(x| heta) dx \geq 0$$

• Under some regularity conditions (twice differentiability, differentiability of integral, support indep. on θ)

$$I(heta) = -E\Big[\Big(rac{\partial^2}{\partial heta^2}lnL(X; heta)\Big)^2| heta_{true}\Big]$$

Jeffreys Priors and Information

$$ullet$$
 Reparameterization: $heta o heta'(heta)$, when $\pi(heta'):=E\left[\left(rac{\partial lnN}{\partial heta'}
ight)^2
ight]$

$$\pi(heta) = \pi(heta') \Big| rac{d heta'}{d heta} \Big| \propto \sqrt{E \left[\left(rac{\partial lnN}{\partial heta'}
ight)^2
ight] \Big| rac{\partial heta'}{\partial heta} \Big|} = \sqrt{E \left[\left(rac{\partial lnL}{\partial heta'} rac{\partial heta'}{\partial heta}
ight)^2
ight]}$$

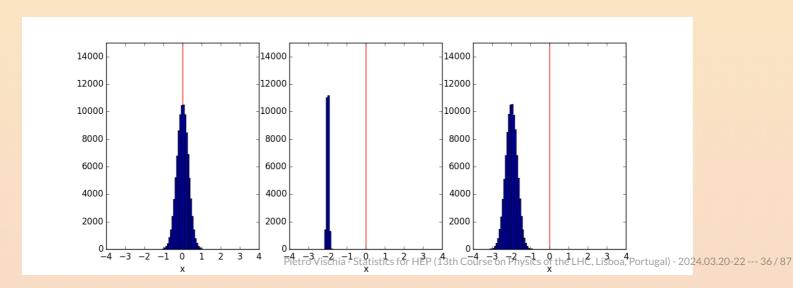
$$E = \sqrt{E \left[\left(rac{\partial lnL}{\partial heta}
ight)^2
ight]} = \sqrt{I(heta)}$$

- To keep information constant, define prior via the information
 - Location parameters: uniform prior
 - \circ Scale parameters: prior $\propto \frac{1}{\theta}$
 - \circ Poisson processes: prior $\propto \frac{1}{\sqrt{\theta}}$
- The authors of STAN maintain a nice set of recommendations on priors

Location and Dispersion

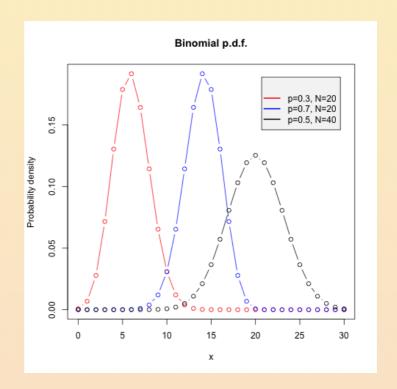
- Draw inference on a population using a sample of experiment outcomes
 - Location ("where are most values concentrated at?")
 - Dispersion ("how spread are the values around the center?")
- Types of uncertainty
 - Error: deviation from the true value (bias)
 - Uncertainty: spread of the sampling distribution

- Sources of uncertainty
 - Random ("statistical"): randomness manifests as distribution spread
 - Systematic: wrong measurement manifests as bias



Binomial Distribution

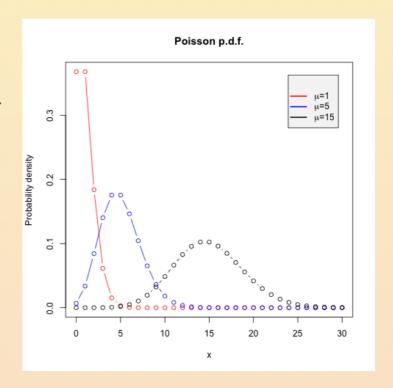
- Discrete variable: r, positive integer $\leq N$
- Parameters:
 - \circ N, positive integer
 - $p, 0 \le p \le 1$
- ullet Probability function: $P(r) = {N \choose r} p^r (1-p)^{N-r}, r = 0, 1, ..., N$
- ullet E(r) = Np, V(r) = Np(1-p)
- Usage: probability of finding exactly *r* successes in N trials



 The distribution of the number of events in a single bin of a histogram is binomial (if the bin contents are independent)

Poisson Distribution

- Discrete variable: r, positive integer
- Parameter: μ , positive real number
- ullet Probability function: $P(r) = rac{\mu^r \, e^{-\mu}}{r!}$
- $E(r) = \mu, V(r) = \mu$
- Usage: probability of finding exactly r events in a given amount of time, if events occur at a constant rate.

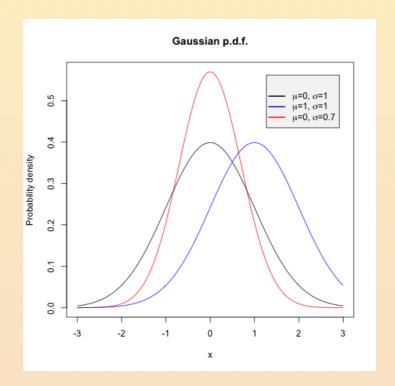


Gaussian ("Normal") Distribution

- Variable: X, real number
- Parameters:
 - $\circ \mu$, real number
 - \circ σ , positive real number
- Probability function:

$$f(X) = N(\mu, \sigma^2) = rac{1}{\sigma\sqrt{2\pi}}exp\Big[-rac{1}{2}rac{(X-\mu)^2}{\sigma^2}\Big]$$

- $egin{aligned} ullet E(X) &= \mu, \ V(X) &= \sigma^2 \end{aligned}$
- Usage: describes the distribution of independent random variables.
 It is also the high-something limit for many other distributions

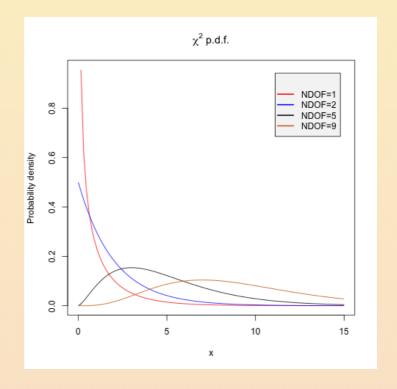


χ^2 distribution

- ullet Parameter: integer N>0 {\em degrees of freedom}
- Continuous variable $X \in \mathcal{R}$
- p.d.f., expected value, variance

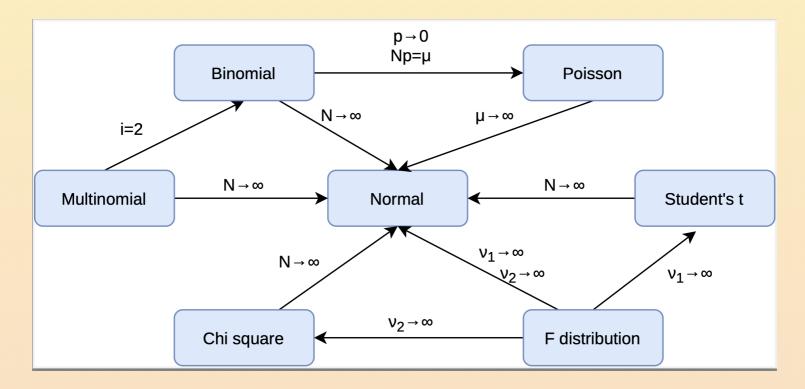
$$f(X) = rac{rac{1}{2}\left(rac{X}{2}
ight)^{rac{N}{2}-1}e^{-rac{X}{2}}}{\Gamma\left(rac{N}{2}
ight)} \ E[r] = N \ V(r) = 2N$$

• It describes the distribution of the sum of the squares of a random variable, $\sum_{i=1}^{N} X_i^2$



• Reminder: $\Gamma() := rac{N!}{r!(N-r)!}$

Asymptotically



Estimate location and dispersion

- Expected value: $E[X]:=\int_{\Omega}Xf(X)dX$ (or $E[X]:=\sum_{i}X_{i}P(X_{i})$ in the discrete case)
 - \circ Extended to generic functions of a random variable: $E[g] := \int_{\Omega} g(X) f(X) dX$
- ullet Mean of X is $\mu:=E[X]$
- • Variance of X is $\sigma_X^2:=V(X):=E[(X-\mu)^2]=E[X^2]-(E[X])^2=E[X^2]-\mu^2$
- Extension to more variables is trivial, and gives rise to the concept of
- Covariance (or error matrix) of two variables:

$$V_{XY} = Eig[(X-\mu_X)(Y-\mu_Y)ig] = E[XY] - \mu_X\mu_Y = \int XY f(X,Y) dX dY - \mu_X\mu_Y$$

- $\circ~$ Symmetric, and $V_{XX}=\sigma_X^2$
- \circ Correlation coefficient $ho_{XY} = rac{V_{XY}}{\sigma_X \sigma_Y}$

Yes...

• ho_{XY} is related to the angle in a linear regression of X on Y (or viceversa)

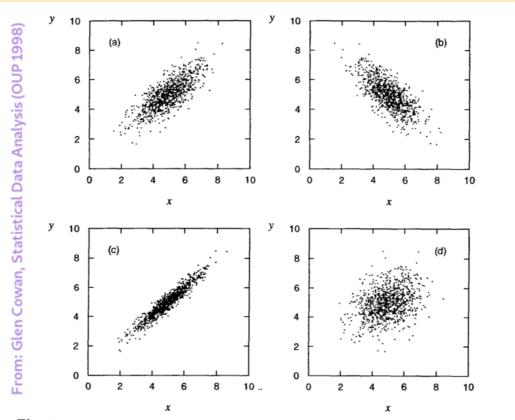
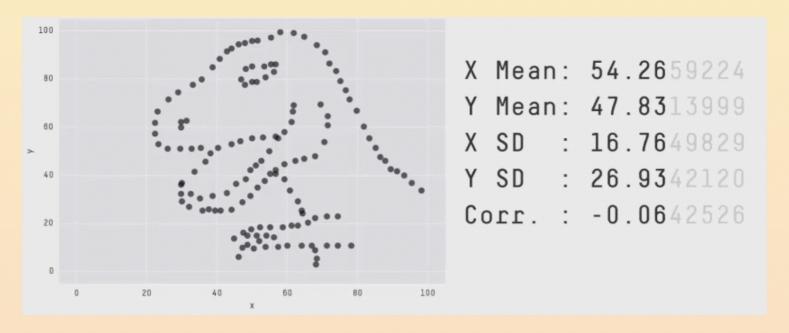


Fig. 1.9 Scatter plots of random variables x and y with (a) a positive correlation, $\rho = 0.75$, (b) a negative correlation, $\rho = -0.75$, (c) $\rho = 0.95$, and (d) $\rho = 0.25$. For all four cases the standard deviations of x and y are $\sigma_x = \sigma_y = 1$.

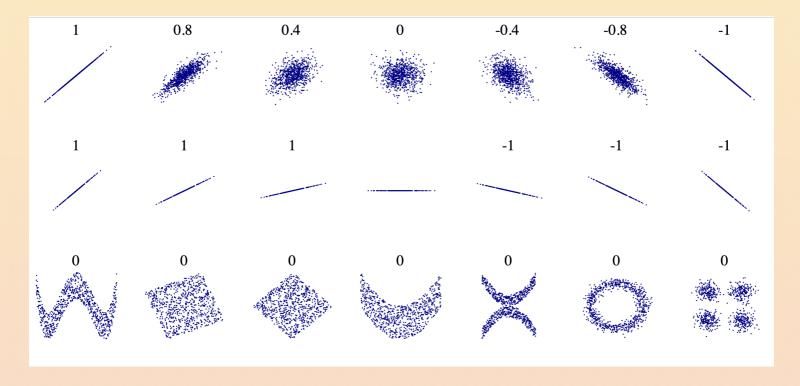
... but:

• Several nonlinear correlations may yield the same ho_{XY} (and other summary statistics)



Linear correlation is weak

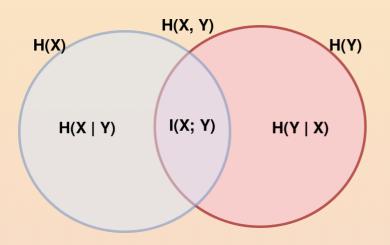
- ullet X and Y are independent if the occurrence of one does not affect the probability of occurrence of the other
 - $\circ X, Y$ independent $\implies \rho_{XY} = 0$
 - $\circ \
 ho_{XY} = 0 \Rightarrow X, Y \ ext{independent}$



Mutual information

$$I(X;Y) = \sum_{y \in Y} \ \sum_{x \in X} p(x,y) log \left(rac{p(x,y)}{p_1(x)p_2(y)}
ight)$$

- ullet General notion of correlation linked to the information that X and Y share
 - \circ Symmetric: I(X;Y) = I(Y;X)
 - $\circ \ I(X;Y)=0$ if and only if X and Y are totally independent



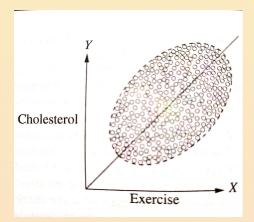
Related to entropy

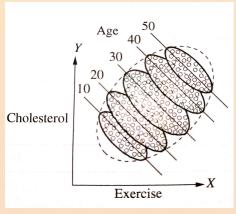
$$I(X;Y) = H(X) - H(X|Y)$$

= $H(Y) - H(Y|X)$
= $H(X) + H(Y) - H(X,Y)$

Causal inference

• Disentangle with interventions on Directed Acyclic Graphs





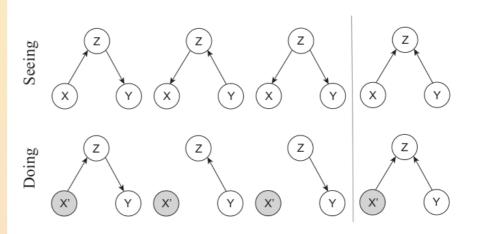
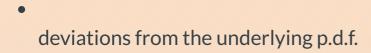
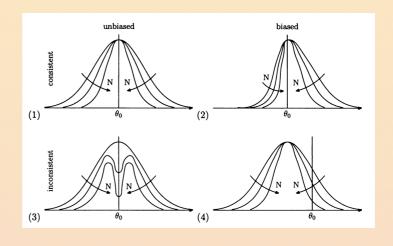


Figure 6. Seeing: DAGs are used to encode conditional independencies. The first three DAGs encode the same associations. *Doing*: DAGs are causal. All of them encode distinct causal assumptions.

Estimators

- ullet $x=(x_1,...,x_N)$ of N statistically independent observations $x_i\sim f(x)$
 - Determine some parameter θ of f(x)
 - $\circ x, \theta$ in general are vectors
- Estimator is a function of the observed data that returns numerical values $\hat{\theta}$ for the vector θ .
- (Asymptotic) Consistency: $\lim_{N \to \infty} \hat{\theta} = \theta_{true}$
- Unbiasedness: the bias is zero
 - \circ Bias: $b := E[\hat{ heta}] heta_{true}$
 - \circ If bias known: $\hat{ heta}'=\hat{ heta}-b$, so b'=0
- ullet Efficiency: smallest possible $V[\hat{ heta}]$





Robustness: insensitivity from small

Sufficient statistic

- Test statistic: a function of the data (a quantity derived from the data sample)
- ullet $X \sim f(X| heta)$, then T(X) is sufficient for heta if f(X|T) is independent of heta
- ullet T carries as much information about heta as the original data X
 - \circ Data X with model M and statistic T(X) with model M' provide the same inference
- ullet Rao-Blackwell theorem: if g(X) is an estimator for heta and T is sufficient, then E[g(X)|T(X)] is never a worse estimator of heta
 - \circ Build a ballpark estimator g(X), then condition on some T(X) to obtain a better estimator
- Sufficiency Principle: if T(X) = T(Y), then X and Y provide same inference about θ
 - Implications for data storage, computation requirements, etc.

The Maximum Likelihood Method

ullet $x=(x_1,...,x_N)$ of N statistically independent observations $x_i\sim f(x)$

$$L(x; heta) = \prod_{i=1}^N f(x_i, heta)$$

• Maximum-likelihood estimator is θ_{ML} such that

$$heta_{ML} := argmax heta \Big(L(x, heta) \Big)$$

- ullet Numerically, best to minimize: $-lnL(x; heta) = -\sum_{i=1}^{N} lnf(xi, heta)$
 - Fred James' Minuit's MINOS routine powers e.g. RooFit
- The MLE is:
 - \circ Consistent: $\lim_{N o \infty} heta_{ML} = heta_{true}$;
 - \circ Unbiased: only asymptotically. $ec{b} \propto rac{1}{N}$, so $ec{b} = 0$ only for $N o \infty$;
 - \circ Efficient: $V[heta_{ML}] = rac{1}{I(heta)}$
 - \circ Invariant under $\psi = g(heta) : \hat{\psi}_{ML} = g(heta_{ML})$

MLE for Nuclear Decay

• Nuclear decay with half-life au

$$egin{aligned} f(t; au) &= rac{1}{ au}e^{-rac{t}{ au}}\ E[f] &= au\ V[f] &= au^2 \end{aligned}$$

ullet Sample $t_i \sim f(t; au)$, obtaining $f(t_1,...t_N; au) = \prod_i f(t_i; au) = L(au)$

$$rac{\partial lnL(au)}{\partial au} = \sum_i \left(-rac{1}{ au} + rac{t_i}{ au^2}
ight) \equiv 0 \qquad \implies \qquad \hat{ au}(t_1,...,t_N) = rac{1}{N} \sum_i t_i$$

- ullet Unbiased: $b=E[\hat{ au}]-E[f]= au- au=0$
- ullet Variance depends on samples: $V[\hat{ au}] = V\Big[rac{1}{N}\sum_i t_i\Big] = rac{1}{N^2}\sum_i V[t_i] = rac{ au^2}{N}$

Estimator	Consistent	Unbiased	Efficient
$\hat{ au}=\hat{ au}_{ML}=rac{t_1++t_N}{N}$	Yes	Yes	Yes
$\hat{ au}=rac{t_1++t_N}{N-1}$	Yes	No	No
$\hat{ au}=t_i$	No	Yes	No

Bias-variance tradeoff

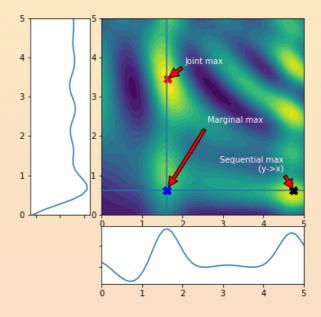
- Cannot have both zero bias and the smallest variance
- Information acts on the curvature of the likelihood, which represents the precision
 - Information is a limiting factor for the variance
- Rao-Cramer-Frechet (RCF) bound

$$V[\hat{ heta}] \geq rac{(1+\partial b/\partial heta)^2}{-Eigl[\partial^2 lnL/\partial heta^2igr]}$$

Fisher Information Matrix

$$I_{ij} = Eig[\partial^2 ln L/\partial heta_i\partial heta_jig]$$

$$argmin_{x,y}\Big(f(x,y)\Big)_y
eq \ argmin_y\Big(f(x,y)\Big)$$



Approximate variance

$$V[\hat{ heta}] \geq rac{\left(1+rac{\partial b}{\partial heta}
ight)^2}{-E\left[rac{\partial^2 lnL}{\partial heta^2}
ight]}$$

MLE is efficient and asymptotically unbiased

$$V[heta_{ML}] \simeq rac{1}{-E\left[rac{\partial^2 lnL}{\partial heta^2}
ight]} igg| heta = heta ML$$

ullet For a Gaussian pdf $f(x; heta)=N(\mu,\sigma)$

$$L(heta) = ln \Big[-rac{(x- heta)^2}{2\sigma^2} \Big]$$

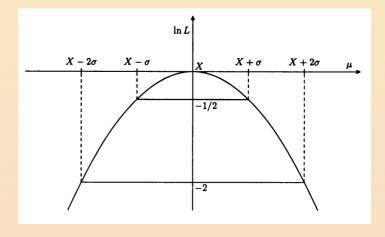
• $L(\theta_{1\sigma})-\hat{ heta}_{ML}=1/2$, and the area enclosed in $[heta_{ML}-\sigma, heta_{ML}+\sigma]$ will be 68.3%.

Confidence interval

An interval with a fixed probability content

$$egin{aligned} P\Big((heta_{ML}- heta_{true})^2 \leq \sigma)\Big) &= 68.3\% \ P(-\sigma \leq heta_{ML}- heta_{true} \leq \sigma) = 68.3\% \ P(heta_{ML}-\sigma \leq heta_{true} \leq heta_{ML}+\sigma) = 68.3\% \end{aligned}$$

- Practical prescription
 - Point estimate by computing the MLE
 - Confidence interval by taking the range delimited by the crossings of the likelihood function with $\frac{1}{2}$ (for 68.3% probability content, or 2 for 95% probability content), etc)

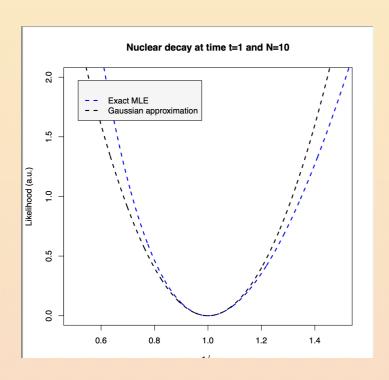


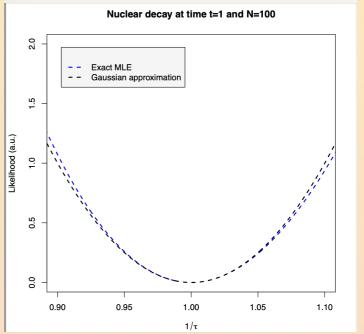
- MLE is invariant for monotonic transformations of θ
 - Likelihood crossings can be used also for asymmetric likelihood functions
 - \circ Intervals exact only to $\mathcal{O}(rac{1}{N})$

Normal approximation

• Good only to $\mathcal{O}(\frac{1}{N})$:

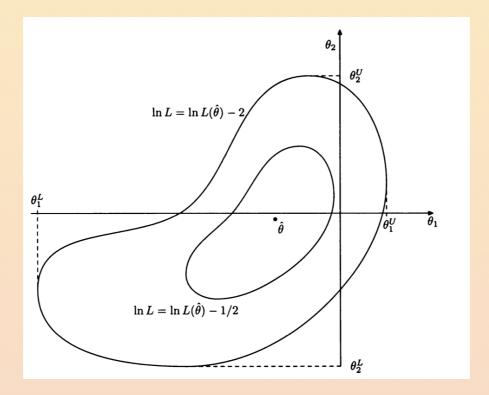
$$L(x; heta) \propto exp igg[-rac{1}{2}(heta - heta_{ML})^T H(heta - heta_{ML}) igg]$$





Likelihood in many dimensions

- Elliptical contours correspond to gaussian Likelihoods
 - The closer to MLE, the more elliptical the contours, even in nonlinear problems
 - Minimizers just follow the contour regardless of nonlinearity
- ullet Crossings (contours) adapted to areas under N-dimensional gaussians



Profiling for systematic uncertainties

- ullet Once upon a time, cross sections were: $\sigma=rac{N_{data}-N_{bkg}}{\epsilon L}$
 - $\circ~N_{sig}$ estimated from $N_{data}-N_{bkg}$ for the measured integrated luminosity L
 - \circ Uncertainties in the acceptance ϵ propagated to the result for σ
- Nowadays, $p(x|\mu, \theta)$ pdf for the observable x to assume a certain value in a single event
 - $\circ \; \mu := rac{\sigma}{\sigma_{pred}}$ parameter of interest
 - \circ heta nuisance parameters representing all the uncertainties affecting the measurement
 - \circ Many events: $\prod_{e=1}^n p(x_e|\mu, heta)$
- The number of events in the data set is however a Poisson random variable itself!
 - \circ Marked Poisson Model $f(X|
 u(\mu, heta),\mu, heta) = Pois(n|
 u(\mu, heta))\prod_{e=1}^n p(x_e|\mu, heta)$

Uncertainties as nuisance parameters

- Incorporate systematic uncertainties as nuisance parameter θ (Conway, 2011)
 - o constraint interpreted as (typically Gaussian) prior coming from the auxiliary measurement
- MLE still depends on nuisance parameters: $\hat{\mu} := argmax_{\mu}\mathcal{L}(\mu, \theta; X)$

$$\mathcal{L}(\boldsymbol{n}, \boldsymbol{\alpha}^{\boldsymbol{0}} | \mu, \boldsymbol{\alpha}) = \prod_{i \in bins} \mathcal{P}(n_i | \mu S_i(\boldsymbol{\alpha}) + B_i(\boldsymbol{\alpha})) \times \prod_{j \in syst} \mathcal{G}(\alpha_j^0 | \alpha_j, \delta \alpha_j)$$

$$\downarrow$$

$$\mathcal{L}(\boldsymbol{n}, 0 | \mu, \boldsymbol{\alpha}) = \prod_{i \in bins} \mathcal{P}(n_i | \mu S_i(\boldsymbol{\alpha}) + B_i(\boldsymbol{\alpha})) \times \prod_{j \in syst} \mathcal{G}(0 | \alpha_j, 1)$$

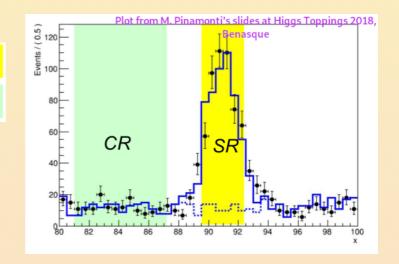
Sidebands

Sideband measurement

$$L_{SR}(s,b) = Poisson(N_{SR} \mid s+b)$$

$$L_{CR}(b) = Poisson(N_{CR} \mid \tilde{\tau} \cdot b)$$

$$egin{aligned} \mathcal{L}_{full}(s,b) = \ \mathcal{P}(N_{SR}|s+b) imes \mathcal{P}(N_{CR}| ilde{ au} \cdot b) \end{aligned}$$

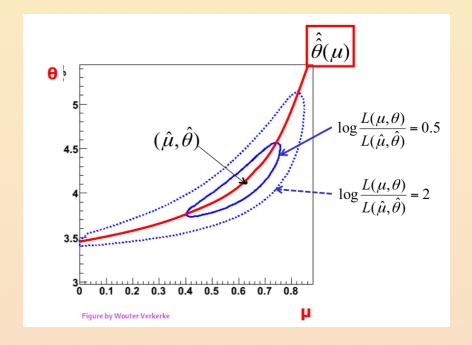


- Example subsidiary measurement of the background rate:
 - 8% systematic uncertainty in the MC rates
 - \circ $ilde{b}$: measured background rate
 - $\circ~ \mathcal{G}(ilde{b}|b,0.08)\, \mathcal{L}_{full}(s,b) = \mathcal{P}(N_{SR}|s+b) imes \mathcal{G}(ilde{b}|b,0.08)$

The Likelihood Ratio:

$$\lambda(\mu) := rac{\mathcal{L}(\mu,\hat{\hat{ heta}})}{\mathcal{L}(\hat{\mu},\hat{\hat{ heta}})}$$

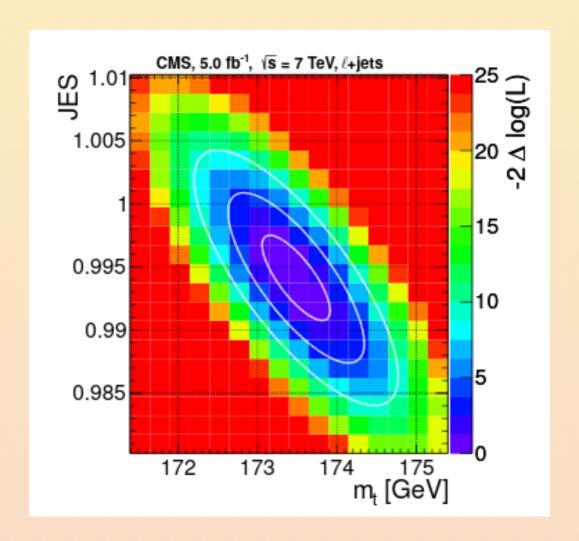
- Profiling: eliminate dependence on θ by taking conditional MLEs
 - Bayesian marginalize Demortier, 2002



ullet $\lambda(\mu)$ distribution by toy data, or use Wilks theorem: $\lambda(\mu) \sim exp - 1$ $\left[\frac{1}{2}\chi^2\right]\left(1+\mathcal{O}(\frac{1}{\sqrt{N}})
ight)$ under some regularity conditions

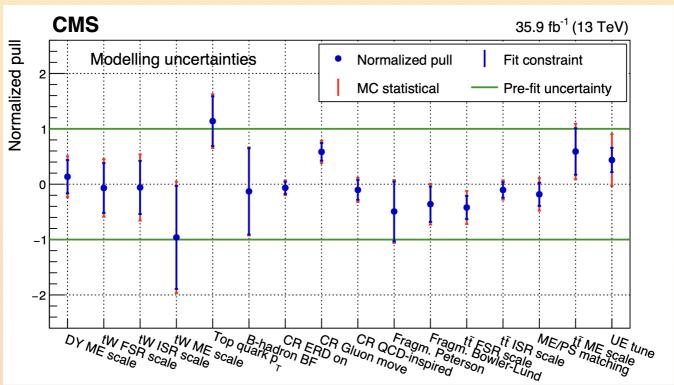
Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 60 / 87

What is a nuisance parameter?



Pulls and Constraints

- Pull: difference of the post-fit and pre-fit values of the parameter, normalized to the pre-fit uncertainty: $pull:=\frac{\hat{\theta}-\theta}{\delta\theta}$
- Constraint: the ratio between the post-fit and the pre-fit uncertainty in the nuisance parameter.



Correlation and Significance

- What worries you the most?
 - $\circ~$ A pull with very small constraint: $heta_{prefit} = 0 \pm 1, heta_{postfit} = 1 \pm 0.9$
 - $\circ~$ The same pull with a strong constraint: $heta_{prefit} = 0 \pm 1$, $heta_{postfit} = 1 \pm 0.2$

Correlation and Significance

- What worries you the most?
 - $\circ~$ A pull with very small constraint: $heta_{prefit} = 0 \pm 1, heta_{postfit} = 1 \pm 0.9$
 - $\circ~$ The same pull with a strong constraint: $heta_{prefit} = 0 \pm 1, heta_{postfit} = 1 \pm 0.2$
- Compare the shift to its uncertainty
- ullet Indipendent measurements: the compatibility C is

$$C = \Delta heta/\sigma_{\Delta heta} = rac{ heta_2 - heta_1}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

- ullet First case C=0.74, second case C=0.98 (larger, still within uncertainty)
- These are not independent measurements! Worst-case scenario formula:

$$C = \Delta heta/\sigma_{\Delta heta} = rac{ heta_2 - heta_1}{\sqrt{\sigma_1^2 - \sigma_2^2}}$$

- First case, C=2.29, second case C=1.02
- The same pull is more significant if there is (almost no) constraint!!!

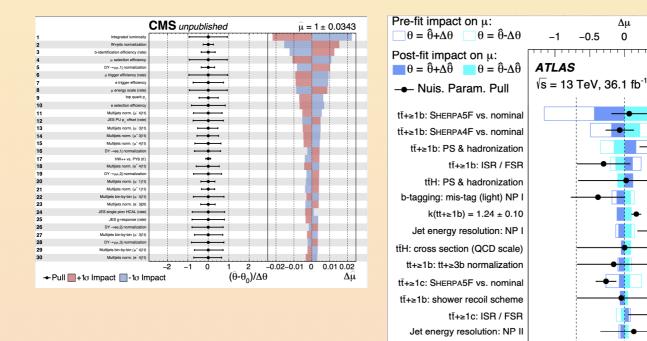
Impacts on the post-fit μ

• Fix each θ to its post-fit value $\hat{\theta}$ plus/minus its pre(post)fit uncertainty $\delta\theta$ ($\delta\hat{\theta}$)

0.5

ysics of the LHC, Lisboa, Portugal) - 2024.03.20<mark>-22 --- 65 / 87</mark>

- Reperform the fit for μ
- Impact is $\hat{\mu} \hat{\mu}(\hat{ heta})$ (should give perfect result on Asimov dataset)



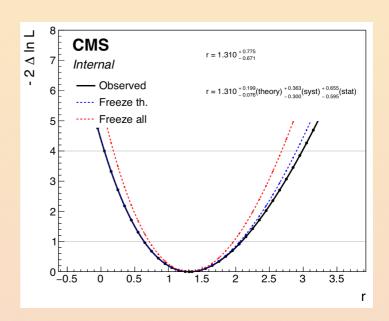
Pietro Vischia - Statistics fo

tt+light: PS & hadronization
Wt: diagram subtr. vs. nominal
b-tagging: efficiency NP I
b-tagging: mis-tag (c) NP I

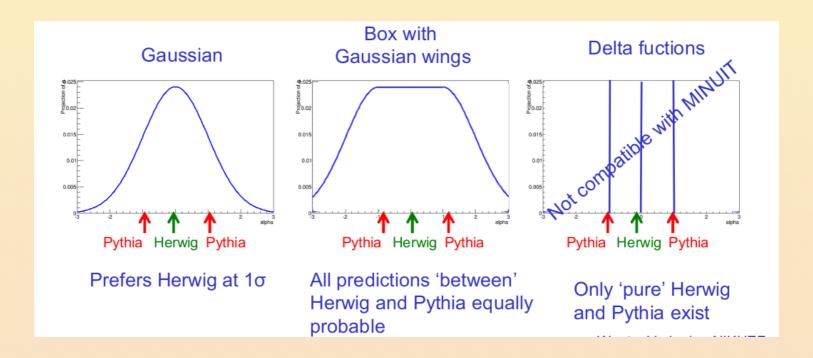
r Hiss: (13th Course on P E_T: soft-term resolution b-tagging: efficiency NP II

Breakdown of uncertainties

- Amount of uncertainty on μ imputable to a given source of uncertainty
 - Modern version of Fisher's formalization of the ANOVA concept
 - the constituent causes fractions or percentages of the total variance which they together produce (Fisher, 1919)
 - the variance contributed by each term, and by which the residual variance is reduced when that term is removed (Fisher, 1921)
- Freeze a set of θ_i to $\hat{\theta_i}$
- Repeat the fit, uncertainty on μ is smaller
- Contribution of θ_i to the overall uncertainty as squared difference
- Statistical uncertainty by freezing all nuisance parameters

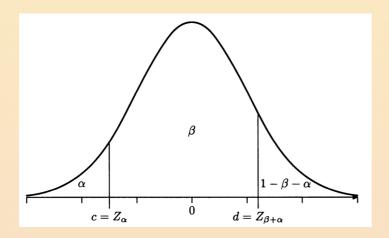


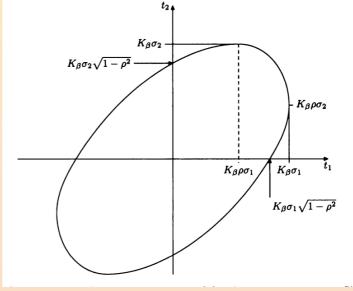
Which is the "correct" constraint?



Confidence intervals

- ullet Probability content: solve $eta = P(a \leq X \leq b) = \int_a^b f(X| heta) dX$ for a and b
 - A method yielding interval with the desired β , has coverage



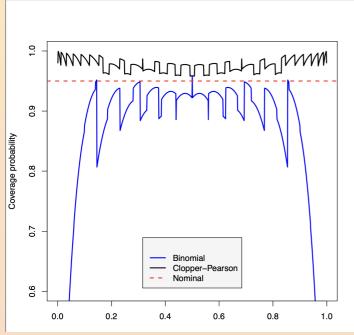


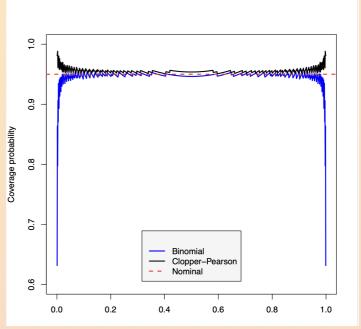
Checking for coverage

- Operative definition of coverage probability
 - Fraction of times, over a set of (usually hypothetical) measurements, that the resulting interval covers the true value of the parameter
 - Obtain the sampling distribution of the confidence intervals using toy data
- Nominal coverage: the one you have built your method around
- Actual coverage: the one you calculate from the sampling distribution
 - \circ Toy experiment: sample N times for a known value of $heta_{true}$
 - Compute interval for each experiment
 - \circ Count fractions of intervals containing $heta_{true}$
- Nominal and actual coverage should agre if all assumptions of method are valid
 - Undercoverage: intervals smaller than proper ones
 - Overcoverage: intervals larger than proper ones

Discrete Case

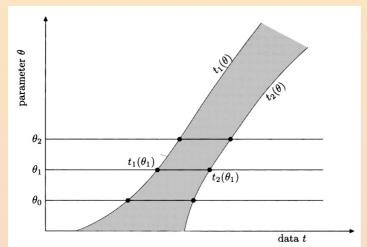
- ullet Probability content $P(a \leq X \leq b) = \sum_a^b f(X| heta) dX \leq eta$
- ullet Binomial: find (r_{low},r_{high}) such that $\sum_{r=r_{low}}^{r=r_{high}} \binom{r}{N} p^r (1-p)^{N-r} \leq 1-lpha$
 - \circ Gaussian approximation: $p\pm Z_{1-lpha/2}\sqrt{rac{p(1-p)}{N}}$
 - Clopper Pearson: invert two single-tailed binomial tests

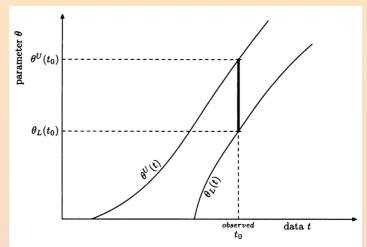




The Neyman construction

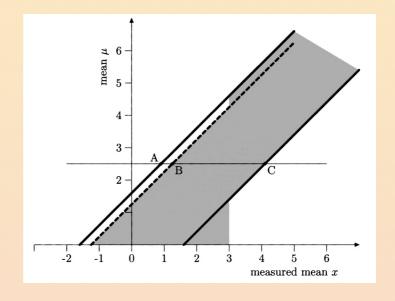
- Unique solutions to finding confidence intervals are infinite
 - Let's suppose we have chosen a way
- Build horizontally: for each (hypothetical) value of heta, determine $t_1(heta), t_2(heta)$ such that $\int_{t_1}^{t_2} P(t| heta) dt = eta$
- Read vertically: from the observed value t_0 , determine $[heta_L, heta^U]$ by intersection
- Intrinsically frequentist procedure





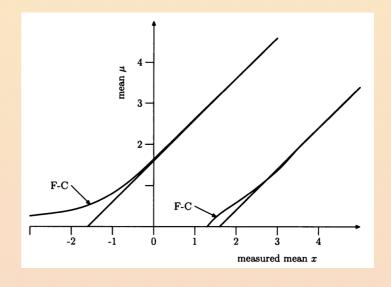
Flip-flopping

- ullet Gaussian measurement (variance 1) of $\mu>0$ (physical bound)
- Individual prescriptions are self-consistent
 - 90% central limit (solid lines)
 - 90% upper limit (single dashed line)
- Mixed choices (after looking at data) are problematic
- Unphysical values and empty intervals: choose 90% central interval, measure $x_{obs}=-2.0$
 - Interval empty, yet with the desired coverage



The Feldman-Cousins Ordering Principle

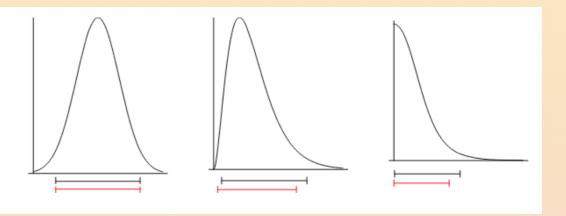
- ullet Unified approach for determining interval for $\mu=\mu_0$
 - \circ Include in order by largest $\ell(x) = rac{P(x|\mu_0)}{P(x|\hat{\mu})}$
 - $\circ \;\; \hat{\mu}$ value of μ which maximizes $P(x|\mu)$ within the physical region
 - \circ $\hat{\mu}$ remains equal to zero for $\mu < 1.65$, yielding deviation w.r.t. central intervals
- Minimizes Type II error (likelihood ratio for simple test is the most powerful test)
- Solves the problem of empty intervals
- Avoids flip-flopping in choosing an ordering prescription



Bayesian intervals

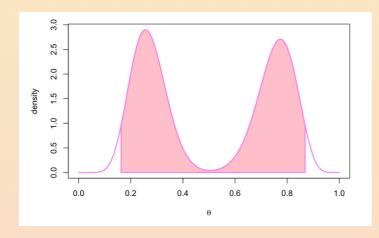
- Often numerically identical to frequentist confidence intervals
 - Much simple derivation
 - Interpretation is different: {\em credible intervals}
 - \circ Posterior density summarizes the complete knowledge about heta
- Highest Probability Density intervals
 - Work out of the box for multimodal distributions and for physical constraints

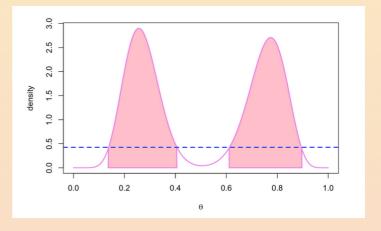
Fig. 1 Simple examples of central (black) and highest probability density (red) intervals. The intervals coincide for a symmetric distribution, otherwise the HPD interval is shorter. The three examples are a normal distribution, a gamma with shape parameter 3, and the marginal posterior density for a variance parameter in a hierarchical model. (Color figure online)



Bayesian intervals

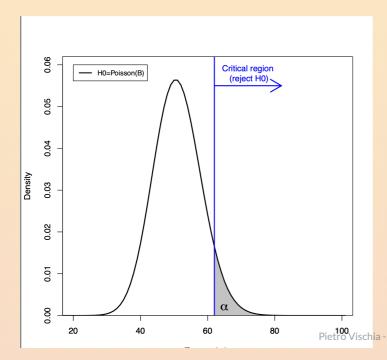
- Often numerically identical to frequentist confidence intervals
 - Much simple derivation
 - Interpretation is different: {\em credible intervals}
 - \circ Posterior density summarizes the complete knowledge about heta
- Highest Probability Density intervals
 - Work out of the box for multimodal distributions and for physical constraints

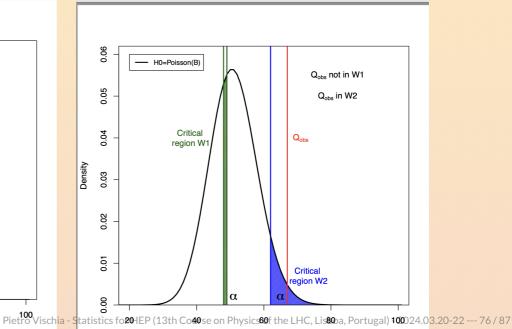




Test of hypotheses

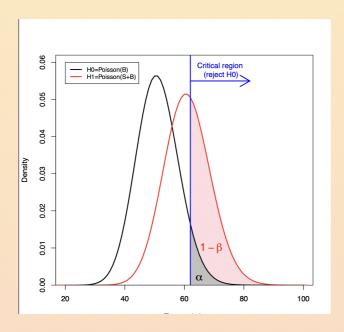
- Hypothesis: a complete rule that defines probabilities for data.
- Statistical test: a proposition on compatibility of H_0 with the available data.
 - $\circ \ X \in \Omega$ a test statistic
 - \circ Critical region W: if $X \in W$, reject H_0 , Acceptance region>: if $X \in \Omega W$, accept H_0
 - \circ Level of significance (size of the test): $P(X \in W|H_0) = lpha$

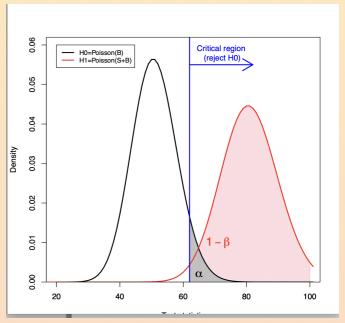




Alternative hypothesis and power

- Need an alternative to solve ambiguities
- Power of the test
 - $\circ P(X \in W|H_1) = 1 \beta$
 - $\circ \;\;$ Power eta is such that $P(X \in \Omega W|H_1) = eta$

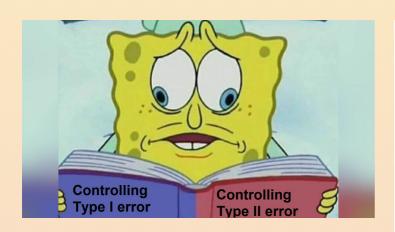


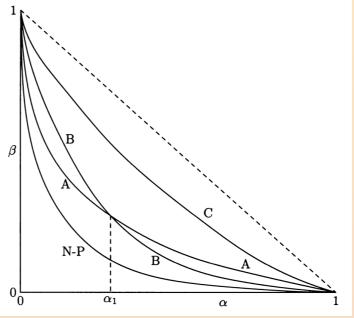


Families of Tests

- Varying α and β results in families of tests
- In one dimension, likelihood ratio (Neyman-Pearson) test is the most powerful test, given by

$$\ell(X, heta_0, heta_1) := rac{f(X| heta_1)}{f(X| heta_0)} \geq c_lpha$$





Bayesian Model Selection

- ullet M_0 and M_1 predict heta > : $P(heta|x,M)=rac{P(x| heta,M)P(heta|M)}{P(x|M)}$
 - \circ Bayesian evidence (Model likelihood) $P(x|M) = \int P(x| heta,M) P(heta|M) d heta$
 - \circ Posterior for M_0 : $P(M_0|x)=rac{P(x|M_0)\pi(M_0)}{P(x)}$, posterior for M_1 : $P(M_1|x)=rac{P(x|M_1)\pi(M_1)}{P(x)}$
 - \circ Posterior odds: $rac{P(M_0|x)}{P(M_1|x)} = rac{P(x|M_0)\pi(M_0)}{P(x|M_1)\pi(M_1)}$
 - \circ Bayes factor: $B_{01}:=rac{P(x|M_0)}{P(x|M_1)}$
 - \circ Posterior odds = Bayes Factor \times prior odds
- Turing (IJ Good, 1975): deciban as the smallest change of evidence human mind can discern

Jeffreys

K	dHart	bits	Strength of evidence	
< 10 ⁰	0	_	Negative (supports M ₂)	
$10^0 \ to \ 10^{1/2}$	0 to 5	0 to 1.6	Barely worth mentioning	
$10^{1/2}\ to\ 10^1$	5 to 10	1.6 to 3.3	Substantial	
$10^1 \ to \ 10^{3/2}$	10 to 15	3.3 to 5.0	Strong	
$10^{3/2} \ to \ 10^2$	15 to 20	5.0 to 6.6	Very strong	
> 10 ²	> 20	> 6.6	Decisive	

Kass and Raftery

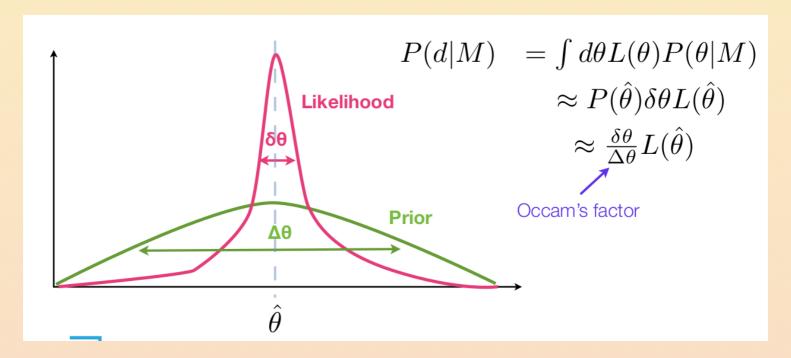
log ₁₀ K	K	Strength of evidence	
0 to 1/2	1 to 3.2	Not worth more than a bare mention	
1/2 to 1	3.2 to 10	Substantial	
1 to 2	10 to 100	Strong	
> 2	> 100	Decisive	

Trotta

InB	relative odds	favoured model's probability	Interpretation
< 1.0	< 3:1	< 0.750	not worth mentioning
< 2.5	< 12:1	0.923	weak
< 5.0	< 150:1	0.993	moderate
> 5.0	> 150:1	> 0.993	strong

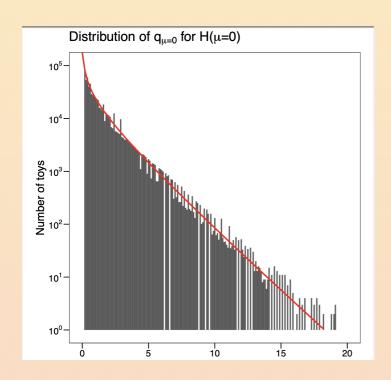
Discourage nonpredictive models

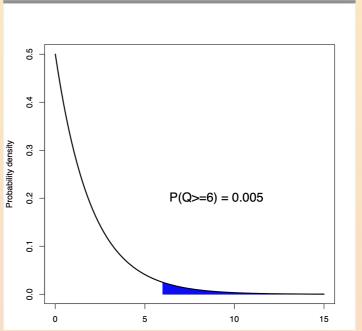
- The Bayes Factor penalizes excessive model complexity
- Highly predictive models are rewarded, broadly-non-null priors are penalized



P-values

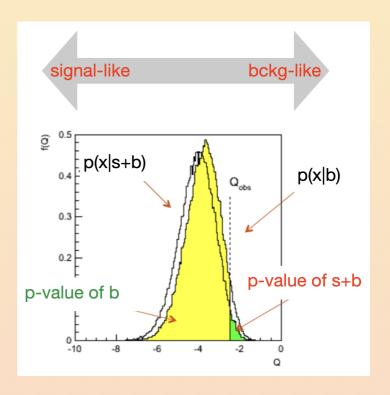
- ullet Probability of obtaining a fluctuation with test statistic q_{obs} or larger, under the null hypothesis H_0
 - \circ Need the distribution of test statistic under \hzero either with toys or asymptotic approximation (if N_{obs} is large, then $q\sim\chi^2(1)$)





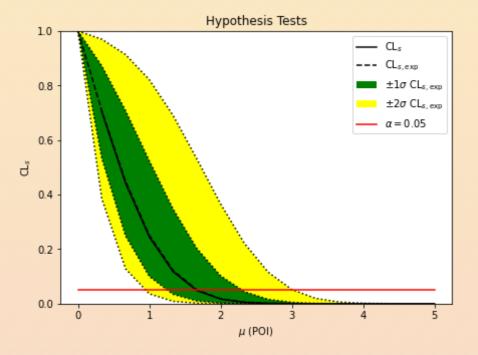
Beyond frequentism: CLs

- ullet $CL_s:=rac{CL_{s+b}}{CL_b}$
- ullet Exclude the signal hypothesis at confidence level CL if $1-CL_s \leq CL$
- Ratio of p-values is not a p-value
- Denominator prevents excluding signals for which there is no sensitivity
- $oldsymbol{oldsymbol{\circ}}$ Formally corresponds to have $H_0=H(heta!=0)$ and test it against $H_1=H(heta=0)$



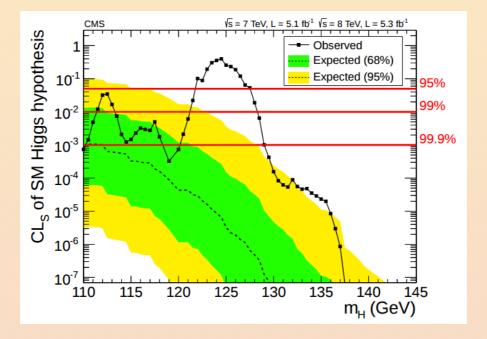
From a scans to limits

- Scan the $CLsteststatisticas a function of the POI(typically \mu = \sigma{obs}/\sigma{pred}$)
- Find intersection with the desired confidence level
- (eventually) convert the limit on μ back to a cross section



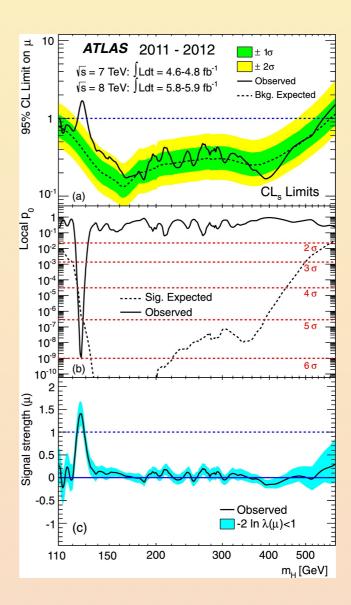
From a limit to hypothesis testing

- Apply the CL_s method to each Higgs mass hypothesis
- Show the CL_s test statistic for each value of the fixed hypothesis
- ullet Green/yellow bands indicate the $\pm 1\sigma$ and $\pm 2\sigma$ intervals for the expected values under B-only hypothesis
 - \circ Obtained by taking the quantiles of the B-only hypothesis



From a limit to hypothesis testing

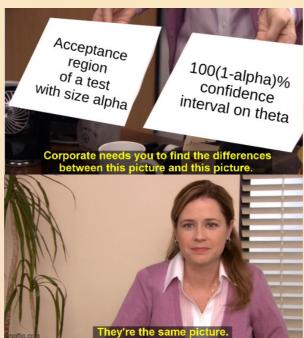
- CLs limit on μ as a function of mass hypothesis
- p-value of excess
- Fitted signal strength peaks at excess



Duality

Meme generated with memegenerator

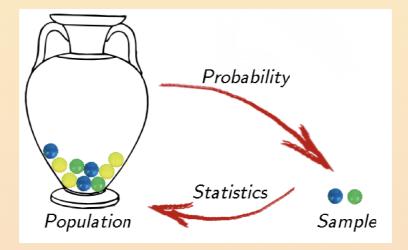
- ullet Acceptance region set of values of the test statistic for which we don't reject H_0 at significance level lpha
- 100(1-lpha)% confidence interval: set of *values of the parameter heta for which we don't reject H_0 (if H_0 is assumed true)



Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 86 / 87

Summary

- Statistics is the way we connect experiment and models
 - Estimate parameters
 - Quantify uncertainties
 - Test theories



 All models are wrong, some models are useful (George E. P. Box, Science and Statistics)