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Lecture 1

Probability and statistics
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Practicalities

e Significantly restructured with respect to the past years

o Lecture 1: Probability and Statistics (minus hypothesis testing)

o Lecture 2: Machine Learning (and hypothesis testing)
e More detailed material in my twenty-hours intensive course
o It may be useful if you tried out the exercises, at your pace!

e Many references here and there, and in the last slide

o Trytoread some of the referenced papers!

o Unreferenced stuff copyrighted P. Vischia for inclusion in my (finally) upcoming textbook
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Statistics answers questions

The quality of the answer depends on the quality of the question

JUST ONGE

HOW OFTEN
DO PLANES GRASH? 4
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...in a mathematical way

e Experiment

e Theory e Statistics :
o Random fluctuations
o Approximations o Estimate
PP o Mismeasurements (detector
parameters
o Free parameters effects, etc)
o Quantify
uncertainty

o Test theories

Q@ -{ |~ Parametric model:
|
0,=1

=1 0,=1

g 4 0,=0.2

2
3 2

o Experimental data Lo

—— Fitted theory: *  Experimental data

counts
L
——
———
——

counts

counts

Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 5/ 87



Why does Statistics work?

Thomas Garrity, video from YouTube


https://www.youtube.com/watch?v=PAZTIAfaNr8

Probability and Statistics

Probability

Statistics .~ @ ®
Population Sample
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https://www.cs.cmu.edu/~aarti/Class/10701/recitation/prob_review.pdf

Random Experiments

o Awell-defined procedure that produces an observable outcome x that is not
perfectly known

e S isthe set of all possible outcomes

e S must be simple enough that we can tell
whether € S or not

¢ |f we obtain the outcome x, then we say
the event defined by € S has occurred

e Repetitions of the experiment must happen under uniform conditions
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Axiomatic definition of probability
(Kolmogorov)

e (02, F, P): measure space

o aset () with associated field (o-algebra) F and
measure P

o Definearandomevent A € F (A is asubset of (2)
then:

1. The probability of A is a real number
AN = (0

2.fAN B = 0,then P(A+ B) =
P(A) + P(B)

3. P(€2) = 1 (probability measures are finite)
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Axiomatic definition for
propositions (Cox and Jaynes)

o Cox, 1946: start from reasonable premises about propositions
o A]B is the plausibility of the proposition A given arelated proposition B
o ~ A the proposition not — A, i.e.answering "no" to "is A wholly true?"
o F'(z,y)is afunction of two variables

o S(z) afunction of one variable

e Two postulates concerning propositions
o C-B|A=F(C|B-A,B|A)
o ~V|A=S5(B|A),ie.(B/A)™+ (~B|A™ =1
e Jaynes demonstrated that these axioms are formally equivalent to the
Kolmogorov ones

o Continuity as infinite states of knowledge rather than infinite subsets
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https://doi.org/10.1119/1.1990764

Frequentist realization

e Repeat an experiment IV times, obtain n times the outcome X

e Probability as empirical limit

P(X) = limy_,o 2
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Subjective ("Bayesian") realization

e P(X)isthe subjective degree of belief in the outcome of a random
experiment (in X being true)

o Update your degree of belief after an experiment

e De Finetti: operative definition, based on the concept of coherent bet

o Assume that if you bet on X, you win a fixed amount of money if X happens, and nothing (0)
if X does not happen

P ( X) .__ The largest amount you are willing to bet
e The amount you stand to win

e Coherenceis when the bet is fair, i.e. it doesn't guarantee an average profit/loss

Dutch book
Book Odds Probability Bet Payout
Trumpelected Even(ltol) 1/(1+1)=05 20 20+ 20 =40
Clintonelected 3tol 1/(1+3)=0.25 10 10+ 30 =40
All outcomes 0.5+0.25=0.75 30 40
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Game Theory

Outcomes are 1s and Os

P(A) ={stake Skeptic needs to get 1 if A happens, 0 otherwise}

Forecaster offers bets (bookie, statistical model)

Skeptic chooses bet

Reality announces outcomes

Skeptic announces Ky € R.

FORn=1.2...:
Forecaster announces p, € [0, 1]. Z” (.y_ _ ]))
Skeptic announces L, € R. P L e 2 30) =1
Reality announces y, € {0, 1}. n

K =Ku +Ln.(!/-n _Pn)-
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https://philpharmblog.files.wordpress.com/2016/03/shafer_lecture_1.pdf

Random variables...

e Numeric label for each element in the space of possible outcomes

o In Physics, we usually assume Nature is continuous, and discreteness comes from our
experimental limitations

e Work with probability density functions (p.d.f.s) normalized with respect to the
interval

F(X) :=limax 0 52

Pla < X <b):= [ f(X)dX
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... iIn many dimensions

e Joint pdf for many variables: f(X,Y,...)

e Marginal pdf ;
integrate over the uninteresting oty vy A 3)

variables
D — G

e Conditional pdf
fix the value of the uninteresting
variables

Marginal density of v

b g
FXIY) = 525
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Bayes Theorem

P(A) = L P(B) = ﬁ
Whole space ]
I &> ' '
P(AIB) = ? P(BIA) = T
¢
PANB)= ——
|
P(A) x P(BIA) . : ‘
X = X = == = P(AnB)
B 0 [
P(B) x P(AIB) = ; X '. = ‘i = P(ANB)
Bob Cousins, CMS. 2008 = P(BIA) = P(AIB) x P(B) / P(A)

. e Venn diagrams were also the basis of Kolmogorov approach (Jaynes, 2003)
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http://127.0.0.1:8001/my_statistics_course/www.cambridge.org/9780521592710
https://arxiv.org/abs/1807.05996

Independence

e Two events A and B are independent if P(AB) = P(A)P(B)

o Can be assumed (e.g. assume that coin tosses are independent)
o Can be derived (verifying that equality holds)
o EgifA={2,4,6),B = {1,2,3,4},wehave P(AB) = 1/3 = P(A)P(B)

e Two disjoint outcomes with positive probability cannot be independent

P(AB) = P(f) = 0 # P(A)P(B) > 0
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Law of Total Probability

e Bayes theorem s valid for any probability measure

A)P(A
P(4|B) := EEAHA

e Useful decomposition by partitioning .S in disjoint sets A;
© ﬂAZAJ =0 V’L,j
ol A S

P(B) = ., P(BNA;) = >, P(B|A;)P(4;)

e The Bayes theorem becomes

P(A|B) = ?(B\A)P(A) |
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A Word of Advice

0 0
P(AIB) = P(BIA) = T

P(A|B) # P(B|A)
o P(have TOEF L|speak English) isvery small,say << 1%
o P(speak English|have TOEFL),is (hopefully) ~ 100%
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Another Word of Advice

Trust
OUR

Partnership VALUES

Innovation
Performance
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https://www.reddit.com/r/dataisugly/comments/boo6ld/when_venn_diagram_goes_wrong/

P(outcome), P(hypothesis)

e Frequentist probability (Fisher) always refers to outcomes in repeated
experiments

o P(hypothesis) is undefined

o Criticism: statistical procedures rely on complicated constructions (pseudodata from
hypotetical experiments)

e Bayesian probability assigns probabilities also to hypotheses
o Statistical procedures intrinsically simpler

o Criticism: subjectivity

UNCLE FISHER SAD T SHOULD PASTOR BAES TOLO ME T SHOULD ASSIGN
TEST HYPOTHESES LIKE THERE PROBABIITEES TO MY ALTERNATIVES AND CHOSE
THE MOSE PROBABLE AFTER T CAREFULLY
TREE:?'E\FE’:‘??‘:LEOEE.‘?;ENO INVESTIGATED THE CASE, SO )
DFFERENCE BETWEEN THE Pl =t PN
GROUPS, THE DE 15 FAR [t / )
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https://agostontorok.github.io/2017/03/26/bayes_vs_frequentist/

Intrinsically different statements

e The probability for the hypothesis to be true, given the observed data |
collected, is 80%

e The probability that, when sampling many times from the hypothesis, | would
obtain pseudodata similar to the data | have observed is 80%
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Some history

e Bayes' 1763 (posthumous) article explains the theorem in a game of pool

o A full system for subjective probabilities was (likely independently) developed
and used by Laplace

e Laplacein asenseis the actual father of Bayesian statistics

Stigler (1996) and McGrayne (2011)



The Obligatory COVID-19 slide

e Mortal disease e Diagnostic test
o D:the patient is diseased (sick) o —:the patient flags positive to the
disease

o H:the patient is healthy
o —:the patient flags negative to the

disease

e Averygood test
o P(+|D) =0.99
o P(+|H) = 0.01

¢ You take the test and you flag positive: do you have the disease?
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The Obligatory COVID-19 slide

e Mortal disease e Diagnostic test
o D:the patient is diseased (sick) o —:the patient flags positive to the
disease

o H:the patient is healthy
o —:the patient flags negative to the

disease

A very good test
o P(+|D) =0.99
o P(+|H) = 0.01

You take the test and you flag positive: do you have the disease?

_ PUIDP(D) _ ___ PHID)P(D)
P(D|+) = =50y = PODIPO+PGIEPE)

We need the incidence of the disease in the population, P(D)!
o P(D) = 0.001 (very rare disease): then P(D|+) = 0.0902, which is fairly small
o P(D) = 0.01 (only afactor 10 more likely): then P(D|+) = 0.50, which is pretty high
o P(D) = 0.1:then P(D|+) = 0.92, almost certainty!
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Naming Bayes

o P(X|H)r(H
P(H|X) := (]'3()%)< )

X , the vector of observed data

P(X|H), the likelihood function, encoding the result of the experiment

m(H ), the probability we assign to H before the experiment

—

P(X), the probability of the data

o usually expressed using the law of total probability

>, P(X|H;) =1

o often omitted when normalization is not important, i.e. searching for mode rather than
integral

P(H|X) x P(X|H)r(H)

P(H\X) the posterior probability, after the experiment

o For aparametric H(0), often written P(6)
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Prior, Likelihood, and Posterior

Likelhood (a.u.)

e Likelihood is always the same: usually it is the frequentist answer

0.05 0.10 015 0.20 0.25 0.30

0.00

Flat prior

Broad prior vs narrow prior

Likelihood
Prior

—— Posterior

w
o
== Likelihood
== Prior = Norm({10,1)
; = — Posterior for prior = Norm{10,1)
= = Prior= Morm{10,10)
—— Posterior for prior = Norm(10,10)
T =
..‘li. [=]
B
=]
£
2 o
A (=]
; _
T o _|
=
20 T T T T T
0 5 10 15 20
[i}
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Prior, Likelihood, and Posterior

e Likelihood is always the same: usually it is the frequentist answer

Broad prior vs narrow prior Broad prior vs narrow prior
& - 2
= =]
== U=hes - = Likelihood
= —— i - — Prior
& - —— [Posterior g N — Posterior
=
— uwy
= i —
E 3 8+
B e ®
£ 3
g 2] £
O o g g ]
- =
w
3 4
= 5]
s
L=
=
3
< T T T T T 3
0 ] 10 15 20 e T T T T T
a 0 5 10 15 20
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Priors to represent boundaries

e Can encode physical boundaries in the model
o positivity of the mass of a particle

o cross section is positive definite

e Strong assumptions on the model can hide weaknesses or anomalies

o atransition probability such as V}; is defined in [O, 1] only if you assume the standard model

Flat prior

030
I

= = Likelihood
== Prior
— Posterior

0.25
|

Likelihood (a.u.)
0.15
1

0.05
[

0.00
|
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Representing ighorance

¢ Ignorance depends on the parameterization

Sample from uniform pdfin 8

10000 A

8000 A

6000 -

Samples

4000 4

2000 -

e Elicitation of expert opinion

Distribution of cos(B) where B is sampled from a uniform prior

20000
17500
15000

$ 12500 1

Q
€ 10000 -

(%]

7500
5000

2500

04
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
cos(B)

o Jeffreys priors
o Computeinformation on the parameter

o Find a parameterization that keeps it
constant

Figure on expert elicitation from Mikkola (2021) Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22
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https://arxiv.org/abs/2112.01380

Information (Fisher)

¢ Information should increase with the number of observations

o 2xdata, 2x information (if data are independent)

¢ Information should be conditional on the hypothesis we are studying

o I = I(0),irrelevant data should carry zero information on ¢

¢ Information should be related to precision

o Larger information should lead to better precision

e Formal equivalence with other definitions (e.g. Shannon)
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The Likelihood Principle

e Datasample Z yps
L(Z;0) = P(Z]0)|z0bs

e The likelihood function L(Z; 6) contains all the information available in the
data sample relevant for the estimation of 6

o Automatically satisfied by Bayesian statistics: P(6|2) o< L(z;60) x 7(6)

o Frequentist typically make inference in terms of hypothetical data (likelihood not the only
source of information)

e Does randomness arise from our imperfect knowledge or is it an intrinsic
property of Nature?
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Likelihood and Fisher Information

2 .
e Define Fisher information via the curvature of the likelihood function, %

o Larger when there are more data
o Conditional on the parameter studied

o Larger when the spread is smaller (larger precision)

Nuclear decay with t,ps =1 and Ngps =1 s Nuclear decay with t,ps =1 and Nps =10

—— Exact MLE —— Exact MLE

w
w

2 InL(A) [a.u.]

2 InL(A) [a.u.]

~N

0 T T T T T T T 0 T T T T T T T
-1.0 -08 -0.6 -04 -0.2 0.0 0.2 04 -1.0 -08 -0.6 -04 -0.2 00 02 04
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More formally...

e Score: S(X;0) = ZInL(X;0)

e Fisher information as variance of the score

) — E[(%an(X;e))2|em] = (%lnf(w|€))2f(w|0)dw > 0

e Under some regularity conditions (twice differentiability, differentiability of
integral, support indep. on 6)

1(9) = —B|( ZpInL(X; 9))219%4
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Jeffreys Priors and Information
(#)
(#5]

e Reparameterization: 0 — 6'(0),whenn(0') := E

7(0) = (9 ‘ffelocJE (%@W) ] JE
()]-om

e To keep information constant, define prior via the information

39’
80

o Location parameters: uniform prior
. A 1
o Scale parameters: prior o< 3

o Poisson processes: prior o< %

e The authors of STAN maintain a nice set of recommendations on priors
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https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

Location and Dispersion

e Draw inference on a population using a sample of experiment outcomes

o Location ("where are most values concentrated at?")

o Dispersion ("how spread are the values around the center?")

e Types of uncertainty

o Error:deviation from the true value

(bias)

o Uncertainty: spread of the sampling
distribution

14000

12000

10000

8000

6000 |

4000

2000+

0

e Sources of uncertainty

o Random ("statistical"): randomness
manifests as distribution spread

o Systematic: wrong measurement
manifests as bias
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Binomial Distribution

e Discrete variable: 7, positive Binomial p.d.f.
integer < NV o
,) ./ C:I — p=0.3, N=20
e Parameters: . 1 P — [
o NN, positive integer o | | ) .
= | \ / III o ‘o
FUEVES T R P
g II| IIII II \
e Probability function: P(r) = £ ’ b oo /2 \
N N_ e N \ / o | °
(N)p @ —pV = I R T
0, ]., ey N Off ."‘-G o \ °
§ ] O'gooooosSfooo\ﬂC«:ucuog'aooaoooolgeo
° E(T’) = Np, V(T) = Np(]. = {IJ Lla 1|o 1I5 2|o 2|5 alo
) :
* Usag:: arrelogllfisy O.f ﬁlllq(:mgl e The distribution of the number of events
kit e S AL in a single bin of a histogram is binomial (if

the bin contents are independent)
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Poisson Distribution

e Discrete variable: 7, positive
integer

Poisson p.d.f.

e e | —_— =1
e Parameter: u, positive real number

—_— u=15

0.3

e Probability function: P(r) = |
Lo
7!

« B(r) = uV(r) = p

e Usage: probability of finding o %,
° | 8 ‘o
exactly 7 events in a given amount / o 5

o o o
. o a
8000099OUOUGQOOOOOOOOOOOSEQQOOO

of time, if events occur at a 0 5 10 15 20 25 30
constant rate.

Prabability density
0.2

041

0.0

X
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Gaussian ("Normal") Distribution

e Variable: X, real number Gaussian p.df.

e Parameters:

0.5

o i, real number

04

o 0, positive real number

e Probability function:

Prabability density
0.3

0.2

. 127T exp{ é (X;,u)z} ;
0 BT = = @ =
V(X) it 0-2 3 2 1 0 1 2 3

e Usage: describes the distribution
of independent random variables.
It is also the high-something limit
for many other distributions
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v* distribution

e Parameter:integer N > 0{\em Fodt
degrees of freedom} |
e Continuousvariable X € R 3| — Noor=2
| — NDOF;Q
e p.d.f., expected value, variance 2 2- |.
N g |
L (_)g) 2 =
f(X) === : 3]
r(5)
E['r] = N 8
Vil 120
e |t describes the distribution of the ’ ° " 0

sum of the squares of a random

: N 2
variable, > ;1 X + Reminder:T'() := i,
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Asymptotically

p-0
) Np=p .
Binomial J Poisson
N — 00 — 00
i=2 a
Multinomial J Normal L Student's t
Vl — 00

[ Chi square ](

Vo0 (
L

F distribution }
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Estimate location and dispersion

o Expectedvalue: E[X] := [, X f(X)dX (or E[X] := ), X; P(X;)in

the discrete case)

o Extended to generic functions of a random variable: E[g fQ IO o
e Meanof Xisu := E|X]

. VarlanceolesaX — Abe ol ,u)z] — E[Xz] e (E[X])2 -
E[X?] —

e Extension to more variables is trivial, and gives rise to the concept of

e Covariance (or error matrix) of two variables:
Vxy = E[(X — px)(Y — py)] = EIXY] — pxpy =
fXYf(X, Y)dXdY — pxpy
o Symmetric,and Vxx = 03(

o Correlation coefficient pxy = U‘;XUYY
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Yes...

e pxy isrelated tothe angle in a linear regression of X on Y (or viceversa)

Y 10 T T T T Y 10 T T T
8 R g | .
6 1 6 | -
4 . 4 :
2+ - 2 . .
0 1 1 1 L D 1 1 | 1
0 2 4 6 8 10 0 2 4 6 8 10
x x
Y 1w — T . ¥ 10 T T T T
8 + ) i 8 b (@
6 = 6 .
4 + . 4 -
2 . 2 + -
0 i | [ i 4] 1 1 1 1
0 2 4 6 8 10 0 2 4 6 8 10
X X

Fig. 1.9 Scatter plots of random variables  and y with (a) a positive correlation, p = 0.75,
(b) a negative correlation, p = ~0.75, (c) p = 0.95, and (d) p = 0.25. For all four cases the
standard deviations of r and y are g, = 0y = 1.
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... but:

e Several nonlinear correlations may yield the same pxy (and other summary

statistics)
0 of X Mean: 54.26
r i % 1 HEap: 87 O
= ...il'l.'l..-..‘. . % X SD 16?6
. o o**’ “
: o]t SR Y SD : 26.93
20 "",,' forr. : 0. 495
.:}:'.'I'I‘...
. :

Datasaurus by Alberto Cairo, gif from David Smith Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 44 / 87
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Linear correlation is weak

e X andY areindependent if the occurrence of one does not affect the
probability of occurrence of the other

o X,Y independent — pxy =0

o pxy = 0+ X,Y independent

Figure by Denis Boigelot Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 45/ 87
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Mutual information

I(X;Y) = Zer

erX p(:l:, y)log (pf(ja(;;:]’;;)(y) )

e General notion of correlation linked to the information that X and Y share
o Symmetric: I(X;Y) = I(Y; X)
o I(X;Y) = 0Oifandonlyif X and Y are totally independent

H(X, Y) e Related to entropy

H(X) 0% 7) = BI(30) — FOZ )

B — e

H(X|Y) 1(X; Y) H(Y | X) - H(X) n H(Y) e H(X Y)
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Causal inference

e Disentangle with interventions on Directed Acyclic Graphs

S b b
d be be b b

Figure 6. Seeing: DAGs are used to encode conditional inde-
pendencies. The first three DAGs encode the same associa-
tions. Doing: DAGs are causal. All of them encode distinct
causal assumptions.

Seeing

Cholesterol

Doing

Cholesterol

Exercise

Left: From Pearl and Glymour (2106). Right: Dablander (2019) Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 47 / 87
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Estimators

e £ = (z1,...,xn) of N statistically independent observations z; ~ f(x)
o Determine some parameter 6 of f(x)

o x,0ingeneral are vectors

e Estimator is afunction of the observed data that returns numerical values é for
the vector 6.

* (Asymptotic) Consistency: —— binsed

1iInN —00 = Htrue

consistent

e Unbiasedness: the bias is zero

A

o Bias:b := F[0] — Ogrye

o Ifbiasknown: 0’ = 6 — b,so b/ =

inconsistent

e Efficiency: smallest possible V[é] ® % @ W

J Robustness: insensitivity from small
deviations from the underlying p.d.f.
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Sufficient statistic

Test statistic: a function of the data (a quantity derived from the data sample)

X ~ f(X10),then T'(X) is sufficient for @ if f( X |T') isindependent of 6

T carries as much information about € as the original data X

o Data X with model M and statistic T'( X ) with model M’ provide the same inference

Rao-Blackwell theorem: if g(X') is an estimator for 6 and T is sufficient, then
E|g(X)|T(X)]is never a worse estimator of 6

o Build a ballpark estimator g(X ), then condition on some T'( X') to obtain a better estimator

Sufficiency Principle: if T'(X) = T'(Y '), then X and Y provide same
inference about 0

o Implications for data storage, computation requirements, etc.

Images from AmStat magazine and ill Pietro Vischia - Statistics for HE ales 4 rtugal) - 2024.03.20-22 --- 49/ 87



https://magazine.amstat.org/blog/2016/12/01/raointerview/
https://math.illinois.edu/david-blackwell

The Maximum Likelihood Method

e £ = (x1,...,xN) of N statistically independent observations ; ~ f(x)

L(z;0) = [, f(z:,0)

Maximume-likelihood estimator is @377, such that

Oy := argmazxl (L(az, 0))

. e N .
e Numerically, best to minimize: —InL(z;0) = — ) ._; Inf(x1i,0)
o Fred James' Minuit's MINOS routine powers e.g. RooFit
e The MLE is:

o Consistent: imy o0 Oy = Oprue;

o Unbiased: only asymptotically.g X %,sog = Qonlyfor N — o0;

o Efficient: V[0yr] = ﬁ
o Invariantunder ¥ = 9(0)3¢ML == Q(HML)
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MLE for Nuclear Decay

e Nuclear decay with half-life 7
t

f(t;7) = e~
B[] = 7
A =

e Samplet; ~ f(t; T),obtaining f(tl, o lbI ’7') = 1_[z f(ti; T) e L(T)

L]l S5 (_ 1o t_) =0 = F(tnestn) = 2k

e Unbiased:b = E[7] — E[f|=7—7=0

e Variance depends on samples: V'[7] = V[% N ti} = % S ] = %

Estimator ConsistentUnbiased Efficient
T=7TmML = zﬁTﬂl Yes Yes Yes
T = zl}—fltm Yes No No
T =0 No Yes No
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Bias-variance tradeoff

e Cannot have both zero bias and argming (f(a:, y)) 2

the smallest variance S
. argmain €T
¢ |Information acts on the curvature g Y <f( . y)

of the likelihood, which represents

the precision
o Informationis a limiting factor for the 9 } Joint max \
variance
3
e Rao-Cramer-Frechet (RCF) bound Marginal max ‘
2.
A 2
~B|InL/06? |
0

e Fisher Information Matrix

’Lj = [82lnL/80 00 ] 0 1 2 3 3 5
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Approximate variance

2
" (1+%)
Vo] > =+
=ES
e MLE is efficient and asymptotically unbiased

_E|:3;én[/:| |

e ForaGaussianpdf f(x;0) = N(u, o)

L(9) = In| — &2

2072

o L(01,) — 011 = 1/2,and the areaenclosed in [0y, — o, 031 + o] will
be 68.3%.
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Confidence interval

e Aninterval with a fixed probability content
P((HML L a)) — 68.3%

P(—O‘ S HML e Htrue S 0') = 683%
P(GML — o S D 0‘) — (ol

e Practical prescription InL

o Point estimate by computing the MLE X

[*)
Q
)

N

¥
®

o Confidence interval by taking the
range delimited by the crossings of
the likelihood function with % (for
68.3% probability content, or 2 for |
95% probability content), etc) / =3 \

e MLE isinvariant for monotonic transformations of 6
o Likelihood crossings can be used also for asymmetric likelihood functions

1
- o Intervals exact only to O( ;)
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Normal approximation

e Good only to O(+):

(0 — Onp)TH(O — Onr1r)

DO =

L(xz;0) x exp| —

) Nuclear decay at time t=1 and N=100
Nuclear decay at time t=1 and N=10
o
T T 7 7 ?
g - \ \ 1 ! o
1 1
o - - ExactMLE
- - ExactMLE o ot - - Gaussian approximation
- - Gaussian approximation ' /I
A T ! 1
PY ! o |
b \ ! -
- \ P
\ \ 1 /
\ 1/ .
- VY " 3 \
El \ ‘\ o S N /
S [ [ 3 o N ’,
o \ 1y o 2 /)
g 2 O ’y e - N /,
o - \ £ \ ’
£ \ ’ © \ I
S \ I B N ‘Y
< ‘a I = AN /,
i vy ;o N /2
LY 1y \\\ /’/
XY ’ o DR .7
o \ ‘ S AN s
S 7 X 4 AN 4
D 7% N ’
N A \ ¢
3, . AN e
XN / AN ’,
AN // \\ - ‘
\ / o | S~ o _--
o _| N~ o
© T T T T T
T T T T T
0.90 0.95 1.00 1.05 1.10
0.6 0.8 1.0 1.2 14
L 1/t
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Likelihood in many dimensions

e Elliptical contours correspond to gaussian Likelihoods
o The closer to MLE, the more elliptical the contours, even in nonlinear problems

o Minimizers just follow the contour regardless of nonlinearity

e Crossings (contours) adapted to areas under [NV -dimensional gaussians

InL =InL(§) -2

InL =InL(f) —1/2

------------------ ok

Plots from James, 2ed. Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 56 / 87



Profiling for systematic
uncertainties

. . e Ndata _kag
e Once upon atime, cross sections were: o = T P

o N4 estimated from Ny, — Npig for the measured integrated luminosity L

o Uncertainties in the acceptance € propagated to the result for o

 Nowadays, p(x|u, @) pdf for the observable x to assume a certain value in a
single event

o W := —Z— parameter of interest
Opred

o 6 nuisance parameters representing all the uncertainties affecting the measurement
o Manyevents: [[._, p(zc|p, 0)

e The number of events in the data set is however a Poisson random variable
itself!

o Marked Poisson Model f (X |v(u,0), u,0) = Pois(n|v(u,0)) [1._, p(zc|p, 0)

Pleasant read Vischia, 2019 Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 57 / 87
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Uncertainties as nuisance
parameters

e |ncorporate systematic uncertainties as nuisance parameter 6 (Conway, 2011)
o constraint interpreted as (typically Gaussian) prior coming from the auxiliary measurement
e MLE still depends on nuisance parameters: i := argmaz,L(u, 0; X)

L, a’|u,a) = [] PrnilpSi(a) +Bi(e) x [ G(a|ey, de)
i€ bins JEsyst

!

L(n,0lp, @) = || Pnilusi(a) +Bi(a)) x [] G(0ley, 1)

i€ bins JEsyst
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Sidebands

Plot from M. Pinamonti's slides at Higgs Toppings 2018,

e Sideband measurement

Ly (s,b) = Poisson(Ng |s+b)  § -
L. (b) = Poisson(N ., | T b) of
B a5 0) = w;
P(Nsgr|s + b) X P(Ngg|T - b) 20:
%4;. .

e Example subsidiary measurement of the background rate:
o 8% systematic uncertainty in the MC rates

o b:measured background rate

o G(b|b,0.08) Lu(s,b) = P(Nsr|s + b) x G(b|b,0.08)
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The Likelihood Ratio:

>~
/N
=
N—"
|
o
S
=

D
—~
=

D>
N—’

e Profiling: eliminate ~
dependence on 6 by ] o)
taking conditional MLEs -

s
o Bayesian marginalize C log L(’Lf’q)
Demortier, 2002 as- L(u,0)
a- === log L(’Lf’q) =2
L(u,0)

i
»
i
et
....
o

3‘5 - wipund nln-l-‘--Al-cnn...-!!ll"

3 vl b b b b b L Ly
0 01 02 03 04 05 06 0.7 08

Figure by Wouter Verkerke I-'l

e \(u) distribution by toy data, or use Wilks theorem: A(u) ~ exp { =
1.2
2 X

] (1 i O(\/Lﬁ)) under some regularity conditions
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What is a nuisance parameter?

CMS, 5.0 b7, (s = 7 TeV, /+jets

o 1.01 25 3
- S
1.005 F 20 <
by
1 .....
15
0.995
10
0.99
5
0.985 R
H

172 173 174 175
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Pulls and Constraints

o Pull: difference of the post-fit and pre-ﬁt values of the parameter, normalized

to the pre-fit uncertainty: pull := 599

e Constraint: the ratio between the post-fit and the pre-fit uncertainty in the
nuisance parameter.

CMS 35.9 b (13 TeV)
a [ Modelllng uncertalntles ® Normalized pull | Fit constraint
-O 2 S A R e
.GNJ C : | MC statistical —— Pre-fit uncertainty
C_EU | H H H B l B H ; T T ; T T T
5 '
Z

W edW ot CR ~,.CR »,CR o, a0y Frag,y 1 £o, tf 19 MEp
O¥ W rsW 15w iy, & g g c;, Qe 29m, 2omt £SR' IS /pg /w ru
€ sca Hsca/ s"af/EsC‘a/ arigron 510 oy, "on D‘Insp/, l‘erso Ow, scf'g Cale h e

Image collected from doi:10.1016/j.revip.2020.100046 references therein Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 62/ 87
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Correlation and Significance

e What worries you the most?
o A pull with very small constraint: Opye it = 0 £ 1,0,05t 7t = 1 £ 0.9

o The same pull with a strong constraint: Oppe it = 0 £ 1, 0505174 = 1 £ 0.2
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Correlation and Significance

e What worries you the most?

o Apull with very small constraint: 0p,e it = 0 £ 1,0,05¢ ¢ = 1 £ 0.9

o The same pull with a strong constraint: Oppe it = 0 £ 1, 050517 = 1 £ 0.2
e Compare the shift to its uncertainty

e Indipendent measurements: the compatibility C'is

C=A0/opg = —0/—22_—?02

e Firstcase C' = 0.74,second case C' = 0.98 (larger, still within uncertainty)

e These are not independent measurements! Worst-case scenario formula:

C = A@/O’Ag = —022_012
01— 0y

e Firstcase,C = 2.29,secondcase C' = 1.02

e The same pull is more significant if there is (almost no) constraint!!!
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Fix each 0 to its post-fit value @ plus/minus its pre(post)fit uncertainty 06 (

Reperform the fit for u

A

A

Impacts on the post-fit

Impactis fi — fu(6) (should give perfect result on Asimov dataset)

CMS unpublished w=1=x0.0343
3 o — —
3 bidentification efficiency (rate) ——
4 1 selection efficiency
s O oo —_—
6 w trigger efficiency (rate)
7 e trigger efficiency ———t
8 1 energy scale (rate)
9 top quarkp_ ——
10 & selection efficiency ——
b et e 1 470 R
i e —
13 Muttets norm. (uw 319 —
14 Multiets norm. (u° 318 ——
15 Multiets norm. (" 411) ——
16 DY —ee,1j nomalization ——
17 HW+-+ vs. PY8 (i) -
18 Multjets norm. (e” 4j1t) ——t
19 DY —»up,2j normalization ——t
20 Muttijets norm. (u 1j1t) ——
b susrom - 11 —_—
= R ——
23 Multjets norm. (e~ 3j01) ——
24 JES single pion HCAL (rate) ——
25 JES g-response (rate) ——
26 DY —ge,2j nomalization ——
pl ot oy o 1 370 .
28 DY —»up,3j normalization —————t
29 Mulits binby-bin (4° 41t ——
30 Muttijets norm. (e 4j1t) ——
-2 -1 0 1 N 2 -0.02-0.01 0 0.01 0.0g
--Pull [+1o Impact [J-1o Impact (6-8,)/A8 Ap

Images collected and cited in doi:10.1016/j.revip.2020.100046

Pietro Vischia - Stati

Pre-fit impact on u:

0= 6+A0 0 =6-A0
Post-fit impact on u.:

0 = 6+AD 0= 0-AD
—e— Nuis. Param. Pull
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tt+=1b: PS & hadronization
tt+=1b: ISR/ FSR
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Jet energy resolution: NP |
ttH: cross section (QCD scale)
tt+=1b: tt+=3b normalization
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Jet energy resolution: NP I
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Breakdown of uncertainties

e Amount of uncertainty on p imputable to a given source of uncertainty

o Modern version of Fisher's formalization of the ANOVA concept

o the constituent causes fractions or percentages of the total variance which they together
produce (Fisher, 1919)

o thevariance contributed by each term, and by which the residual variance is reduced when
that term is removed (Fisher, 1921)

2) 8
e Freezeasetoff;to0; = [ cMs -
:]1 7’ Internal o
e Repeat the fit, uncertainty on p is ' 4 — Observed 110 oo ey ot
E _____ Freeze th. -0.076 -0.300 - 0595
Sma”er 5F Freeze all ',
e Contribution of 8, to the overall 4
uncertainty as squared difference 3
2f
e Statistical uncertainty by freezing g
1
all nuisance parameters i
0‘ 1
-0.5

Toy data Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 66 / 87



Which is the "correct" constraint?

Gaussian

Pythia Herwig Pythia

Prefers Herwig at 10

Graphics by Wouter Verkerke

. 51~¢+2.m

Box with

Gaussian wings Delta fuctions

SDZ:\— Da2%F é\é
fi_’ﬂ.l:@ %’om \.\Q\
: &1
B.O15| O.CIIEE \.8
| N
B ”": <?®
0305 nans- 06\
" O
o"**% -------- = n*$0 ----- *T --------- -
Pythia Herwig Pythia Pythia Herwig Pythia

All predictions ‘between’ Only ‘pure’ Herwig
Herwig and Pythia equally and Pythia exist
probable .
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Confidence intervals

e Probability content:solve § = P(a < X < b) = fab f(X|0)dX foraand
b

o A method yielding interval with the desired /3, has coverage

Kgpoz+\/1 - p?

Kgpo,

d = Zﬁ+& K,afn /1 — P2
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Checking for coverage

o Operative definition of coverage probability

o Fraction of times, over a set of (usually hypothetical) measurements, that the resulting
interval covers the true value of the parameter

o Obtain the sampling distribution of the confidence intervals using toy data

e Nominal coverage: the one you have built your method around

e Actual coverage: the one you calculate from the sampling distribution
o Toy experiment: sample IV times for a known value of 0},
o Compute interval for each experiment

o Count fractions of intervals containing 0y,

e Nominal and actual coverage should agre if all assumptions of method are valid
o Undercoverage: intervals smaller than proper ones

o Overcoverage: intervals larger than proper ones
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Discrete Case

e Probability content P(a < X < b) = Zz e < B

e Binomial: find (i, Thigh ) Such that > — " (]Q)pr(l —p)V " <1 -a

o Gaussian approximation: p & Zl—a/2

T"=Tlow

p(1-p)
N

o Clopper Pearson: invert two single-tailed binomial tests

Coverage probability

— Binomial
—— Clopper—Pearson
- = Nominal

0.0

0.2

T
0.4

0.6

0.8

2
5
©
Q
[
a @« _|
o O
(=2}
o
[
3
[&]
~
S
—— Binomial
—— Clopper—Pearson
= = Nominal
©
@
T T T T T T T
1.0 0.0 0.2 0.4 0.6 0.8 1.0
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The Neyman construction

Unique solutions to finding confidence intervals are infinite

o Let's suppose we have chosen a way

Build horizontally: for each (hypothetical) value of 6, determine t1(6), t2(60)
such that ft? R

e Read vertically: from the observed value t(, determine [0, HU] by
intersection

¢ Intrinsically frequentist procedure

L -}
8
> B U\l e
g v»@ 5 8% (to)
& g
) N
i e
" Oc(to) [=--mmmmmmmmmmmm oo '
1
t1(61) / / :
0 1
! / / ta(61) :
1
1
6o i
'
/ - observed data t
i data t fo
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Flip-flopping

e Gaussian measurement ( variance 1) of . > 0 (physical bound)

e Individual prescriptions are self-consistent
o 90% central limit (solid lines)

o 90% upper limit (single dashed line)

e Mixed choices (after looking at
data) are problematic

e Unphysical values and empty
intervals: choose 20% central
interval, measure £ ps = —2.0

o Interval empty, yet with the desired
coverage

f | T | T T | | 1
-2 -1 0 1 2 3 4 5 6

measured mean x
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The Feldman-Cousins Ordering
Principle

e Unified approach for determining interval for 1 = g
o Include in order by largest £(x) = ];((ng)))

o [ value of y which maximizes P (x| ) within the physical region

o firemains equal to zero for 1 < 1.65, yielding deviation w.r.t. central intervals

e Minimizes Type Il error (likelihood
ratio for simple test is the most L
powerful test) g

e Solves the problem of empty
intervals

F-C —

¢ Avoids flip-flopping in choosing an
ordering prescription , I I | , ,

-2 -1 0 1 2 3 4

measured mean x

F-C

Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 73/ 87



Bayesian intervals

e Often numerically identical to frequentist confidence intervals
o Much simple derivation
o Interpretation is different: {\em credible intervals}

o Posterior density summarizes the complete knowledge about 0

e Highest Probability Density intervals

o Work out of the box for multimodal distributions and for physical constraints

Fig. 1 Simple examples of
central (#lack) and highest
probability density (red)
intervals. The intervals coincide
for a symmetric distribution,
otherwise the HPD interval is
shorter. The three examples are
a normal distribution, a gamma
with shape parameter 3, and the
marginal posterior density for a
variance parameter in a
hierarchical model. (Color —_  ——— ————
figure online)
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Bayesian intervals

e Often numerically identical to frequentist confidence intervals
o Much simple derivation
o Interpretation is different: {\em credible intervals}

o Posterior density summarizes the complete knowledge about 0

e Highest Probability Density intervals

o Work out of the box for multimodal distributions and for physical constraints
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Test of hypotheses

e Hypothesis: a complete rule that defines probabilities for data.

e Statistical test: a proposition on compatibility of H( with the available data.
o X € ()atest statistic
o Criticalregion W:if X € W, reject Hy, Acceptance region>:if X € ) — W, accept Hy

o Level of significance (size of the test): P(X € W|H) = «

©
o - . . ©
= P Critical region S
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> | ritical
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Alternative hypothesis and power

¢ Need an alternative to solve ambiguities

e Power of the test
o PXeWH)=1-5
o Power Bissuchthat P(X € Q — W|H;) =

2 g N
S | Critical region S Critical region
(reject H0)E (reject HO);
'-‘7 [t}
<~ o 4
e =
3 <
3
o g —
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Families of Tests

e Varying e and (3 results in families of tests

e |Inone dimension, likelihood ratio (Neyman-Pearson) test is the most powerful
test, given by

X161
UX,0,01) = 5S> ca

Images from Statistical Statistics Memes and James, 2nd ed. Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 78 / 87


https://www.facebook.com/statsmemes/

Bayesian Model Selection

o

P(z|M)
z|M) = [ P(z|0, M)P(6|M)d6

Bayesian evidence (Model likelihood)

e M)y and M predict 6>: P(0|x, M) = (z]0,M)P (6| M)
P(

Posterior for Mo: P(Mo|x) = (mlM(E:)r( PlMo)n(Mo) ‘osterior for My: P A ) —
P(a|My)m(M,)
P(z)

P(My|z

Posterior odds: P(Ml\ac; =%

Bayes factor: By, := P

Posterior odds = Bayes Factor X prior odds

e Turing (IJ Good, 1975): deciban as the smallest change of evidence human mind
candiscern

K
< 10°
10° to 10172
10172 to 101
10! to 1032
10372 to 102
> 102

Jeffreys Kass and Raftery Trotta

AhEW e SEEnpfhelcrithns logyo K K Strength of evidence InB| relative odds faw;f;agﬁsers Interpretation
o - Negative (supports M;) Oto1/2| 1to3.2 | Notworth more than a bare mention . not worth
0to5 0to 1.6 | Barely worth mentioning 1/2to 1| 3.2 to 10 substantial =10 =31 <0780 mentioning
5to10 |1.6t0 3.3 Substantial 1to2 | 10to 100 Strong I S e Dk TEER
10to 15 | 3.3 t0 5.0 strong =2 =100 e <5.0 < 150:1 0.993 moderate
15t0 20 | 5.0 t0 6.6 Very strong >5.0 >150:1 >0.993 strong
> 20 > 6.6 Decisive
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Discourage nonpredictive models

e The Bayes Factor penalizes excessive model complexity

e Highly predictive models are rewarded, broadly-non-null priors are penalized

A P(d|M) = [dOL(0)P(6|M)
Likelihood ~ P(0)60L(0)
%%L(QA)

.

Occam'’s factor
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P-values

e Probability of obtaining a fluctuation with test statistic qo»s or larger, under the

null hypothesis H

o Need the distribution of test statistic under \hzero either with toys or asymptotic
approximation (if IV is large, then g ~ X2(1))

Number of toys

Distribution of g, for H(u=0)

10%

-

o
w
|
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o
N
|
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Beyond frequentism: CLs

CL,
> CLS — C’—L:b

e Exclude the signal hypothesis at confidence level CLif1 — CLy < CL

e Ratio of p-values is not a p-value

e Denominator prevents excluding signal-like bckg-like

signals for which there is no

sensitivity 5 °°f
C p(x|s+b
e Formally corresponds to have °»4§p( Is+0) N p(x|b)
Hy = H(0! = 0) and test it ook N\ A
against Hy = H(6 = 0) g

p-valu p-value of s+b
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From a scans to limits

e Scanthe $CLsteststatisticasafunctionofthe POI (typically\mu =
\sigma{obs}/\sigma{pred}$)

e Find intersection with the desired confidence level

 (eventually) convert the limit on p back to a cross section

Hypothesis Tests

10
—_— L,
——= Clse
05 1o CL ey
+20 Cls o
— g=0.05
06 -
i
(]
0.4 -
0.2 A
(1] S e .
4 5
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From a limit to hypothesis testing

e Apply the C' L method to each Higgs mass hypothesis
e Show the C' L test statistic for each value of the fixed hypothesis

e Green/yellow bands indicate the ==10 and £=2¢ intervals for the expected
values under B-only hypothesis

o Obtained by taking the quantiles of the B-only hypothesis

" CMS Vs=7TeV,L=511f5" {s=8TeV,L=5.3 1"
T T T T I T T T T l T T T T l T T T T | T T T T | T T T T | T T T T
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&
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From alimit to
hypothesis
testing

e CLslimiton p as a function of mass
hypothesis

e p-value of excess

e Fitted signal strength peaks at
excess

Plot from the ATLAS Higgs discovery paper Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22

95% CL Limiton p

0

Local p

()

Signal strength

10 = —
°E ATLAS 2011-2012 @it E
- s=7Tev: [Lat-deasn’ LI 3
= ) Cra 4 — Observe .
[ s-8Tev: fLat=sss0om’ DA ]

1 .................................................
107 — (a) CLS Limits —

1010 (b) : 3
2F E
15F =
b
05 F; €
0 AN LN~ -
y & wyY A , N SR =
-05F =
= — Observed -
1B (©) -2 In Au)<1 E
110 150 200 300 400 500
m,, [GeV]

== (&5 &/


https://doi.org/10.1016/j.physletb.2012.08.020

Duality

Meme generated with memegenerator

o Acceptance region set of values of the test statistic for which we don't reject
Hy at significance level o

e 100(1 — )% confidence interval: set of *values of the parameter 6 for which
we don't reject Hy (if Hy is assumed true)

allh, )
Corporate needs you to find the differences
between this picture and this picture.

They're the same picture.
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Summary

e Statistics is the way we connect experiment and models
o Estimate parameters
o Quantify uncertainties

o Test theories

Probability

S tatistics
Population Sa mple

¢ All models are wrong, some models are useful
(George E. P. Box, Science and Statistics)

Picture by Rob Hall Pietro Vischia - Statistics for HEP (13th Course on Physics of the LHC, Lisboa, Portugal) - 2024.03.20-22 --- 87 / 87


https://doi.org/10.1080%2F01621459.1976.10480949
https://www.cs.cmu.edu/~aarti/Class/10701/recitation/prob_review.pdf

