Standard Model Processes

Course on Physics at the LHC

Jonathan Hollar (LIP) March 18, 2024

The Standard Model is...

One of the most predictive, precisely tested theories of nature in human history

The Standard Model is...

One of the most predictive, precisely tested theories of nature in human history

Kind of a bricolage, with good reasons to believe it's incomplete

If there is physics beyond the SM, how can we find it at the LHC?

1. Directly search for new particles (see lectures April - May)

2. Measure properties and interactions of known particles, to find where the Standard Model falls apart

"Standard Model" encompasses many areas...

Electroweak sector (this lecture)

Properties and interactions of *W*, *Z*, γ

- Are SM/EWK parameters self-consistent?
 (Precision measurements of particle properties + SM parameters)
- Are SM/EWK interactions self-consistent?
 (Rates/cross sections & anomalous couplings)

QCD

Interactions of gluons and quarks - see first lecture

If time today - W/Z as tools to study QCD

Flavor and top physics

Properties and interactions of top, bottom, and other heavy quarks or leptons

See lectures March- April/May

Higgs physics

Properties and interactions of the Higgs boson

See lectures in April

...though EWK gauge bosons connect to many of them

The tools: Large Hadron Collider at CERN

proton-proton collisions at 7/8 TeV (Run 1), 13 TeV (Run2), **13.6 TeV (Run3)**

SM-Electroweak mainly studied at the large general-purpose detectors CMS and ATLAS

Also at LHCb in the forward direction

The players: W, Ζ, γ

W and Z decays, by the numbers

Most of the time (~67-70%), W and Z bosons decay into quarks/ hadrons

Followed by decays to neutrinos for the Z

High rate, but also low experimental resolution, high background

Decays with muons and electrons

Low rate, but lowest background/cleanest signals

Taus: Can be reconstructed via either decays to e/μ , or to hadrons

Leptonic Z reconstruction

$Z \rightarrow II$: One of the cleanest signatures at a hadron collider

Opposite charge high- p_T muons or electrons, with invariant mass near the Z mass (~91 GeV)

Lepton isolation (require leptons separated from other tracks/calorimeter deposits):

Suppress "fake" backgrounds from QCD/misidentified hadrons, light meson decays-in-filght

Suppress "non-prompt" leptons from decays of heavy flavor bottom/charm quarks

Leptonic W reconstruction

• $W \rightarrow lv$: high-p_T isolated muon or electron, with "missing transverse energy" inferred from sum of all particles from the collision vertex

Presence of undetected neutrino => no clear invariant mass peak, so rely on other variables

- Lepton p_T
- Missing E_T or p_T
- "Transverse mass", using angle between lepton and missing energy/momentum

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{miss}cos\Delta\phi}$$

Leptonic W and Z signals

Huge samples of W's and Z's produced via q/qbar interactions

Even in the low branching-fraction leptonic decays

In 150fb-1 at 13 TeV, expect:

~3B $W \rightarrow lv$ events produced

~300M $Z \rightarrow \parallel$ events produced

Very high signal/background, especially in $Z \rightarrow II$

Electroweak physics: Precision measurements of SM parameters

Precision SM measurements

Is the Standard Model self-consistent?

Measure many observables closely related to SM parameters, then check if SM can fit all the data

Electroweak sector traditionally the domain of e+ecolliders: LEP@CERN, SLC@SLAC

Hadron colliders unique for top, Higgs inputs (see upcoming lectures)

But LHC also produces enormous numbers of W,Z bosons => in some cases, can also do precision EWK measurements

Disagreement (# of standard deviations) from the SM

A_(LEP)

14

sin²

Precision SM measurements: W mass

Basic approach: Generate many Monte Carlo "templates" simulated with different W-mass values

Fit to the data, to determine which mass best describes reality

Requires extremely precise control of systematics

Experimental aspects

Precision of lepton momentum/energy measurement

Control of missing E_{T} reconstruction

Theory/model aspects

Uncertainties due to PDFs

Uncertainties due to "underlying event" activity produced together with the *W*

Use comparisons to well-reconstructed Z samples to control (some of) these

Precision SM measurements: W mass

Precision SM measurements: more W mass

LHC results consistent with, and approaching precision of, best previous measurements

Precision SM measurements: weak mixing angle

Weak mixing angle $sin^2 \theta_{eff}$

Enters in $ff \rightarrow Z \rightarrow I^+I^-$ production via vector-axial interference

The two most precise measurements at e⁺e⁻ colliders are marginally consistent

Can be measured from "forwardbackward" asymmetry of leptons

Count number of positively charged leptons along the inferred quark vs. the anti-quark direction

10⁵

10

10

0.9

Events / GeV

10

102

0.9

Data / MC

Data / MC

 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23101 \pm 0.00036 \,(\text{stat}) \pm 0.00018 \,(\text{syst}) \pm 0.00016 \,(\text{theo}) \pm 0.00031 \,(\text{PDF})$

 TBD with more data/higher precision measurements

A surprise from across the Atlantic (& Lake Michigan)

[Ref]

Results are the most precise to date, far from the SM fit expectation, and far from the most precise previous experiments

 $M_W = 80,433.5 \pm 6.4_{
m stat} \pm 6.9_{
m syst} = 80,433.5 \pm 9.4 \, {
m MeV}/c^2$

All eyes on the LHC now to confirm (or not) this unexpected result

In 2022 the CDF experiment released the final W-mass measurement from pp collisions at the Fermilab Tevatron

Downloaded

Electroweak physics: cross sections and gauge boson couplings

Rates of Standard Model processes and electroweak couplings

Another way to test the Standard Model:

Do W/Z/γ's interact with each other as predicted by the Standard Model?

In other words - does LHC measure cross sections involving gauge boson interactions at the rates expected from the SM?

Especially interesting to look in the high-energy tails of distributions

- Legacy of the LEP e⁺e⁻ collider: existence of charged triple gauge (WWZ/WWγ) couplings established
- LHC: increase in energy from ~0.2 TeV to ~13/14 TeV!

Gauge boson self-interactions

Reminder: The SM precisely predicts the strength of EWK gauge boson interactions

True triple and quartic couplings involving W-pairs are predicted to occur

True neutral triple and quartic couplings (with all Z's or all γ's) are forbidden

Processes can occur through higherorder (loop/box) diagrams at very low rates

Triple gauge couplings: different views

Usually more than 1 way to probe each coupling

Different experimental systematics, backgrounds, etc.

Study all of them to get a complete picture

Processes sensitive to WWZ couplings

"Anomalous" gauge couplings

Differences (or not) from the SM can be quantified with "anomalous gauge couplings"

Mostly model-independent/ agnostic about details of new physics

Modern interpretation

Assume new physics occurs at energies too high to directly produce new particles at the LHC

Anomalous couplings are "fingerprints" of beyond-SM physics at lower energies from off-shell or loop-level effects

Anomalous couplings and indirect searches

Classic example: beta decay of neutrons

Discovered in 1899

Apparent "Anomalous quartic coupling" of *npev* in original Fermi theory

Higher energies (better microscope) were needed to allow direct observation of the "mediator" particle responsible

W-boson finally directly detected at CERN in 1983

Indirect searches/anomalous couplings sometimes point to new physics long before direct detection of new particles

Triple gauge couplings: anatomy of a LHC analysis

Compare bulk of distribution to SM prediction+backgrounds

Quantify any deviations in the high energy tails

Triple gauge couplings with WW production

Measure cross sections for events with 2 leptons + missing E_T

High statistics

Fairly low backgrounds from top quark production, QCD fakes - estimated from data control samples and simulation

(Even the Higgs could be considered a background here!)

Overall, cross sections as a function of p_T agree with the Standard Model (Run 1 data shown)

Reminder: WW γ and WWZ couplings are allowed in the SM, and are included the cross section prediction

Triple gauge couplings with WW production (II)

Anomalous couplings?

Plot m_{II} and zoom on the highmass tails

No sign of excess, data agrees with the SM

Convert into upper limits on anomalous coupling parameters

One-by-one, or for several couplings in a 2-d space

ZZ and triple gauge couplings production

Golden signature: 4 leptons, with 2 pairs compatible with a $Z^{(*)}$ (either e+e-, $\mu^+\mu^-$)

Very little background, especially at high mass

Cross sections compatible with SM at lower $m_{\mbox{\scriptsize ZZ}}$

No sign of BSM couplings at large m_{ZZ}

Reminder: no direct ZZZ or γ ZZ couplings in the SM, prediction comes from q-qbar interactions

Summary of TGCs

LHC has studied many more processes sensitive to TGCs

> Charged TGCs are consistent with SM predictions

Neutral TGCs are consistent with 0 (=SM prediction) not shown

LHC limits on new physics in TGCs now the world's best

From TGCs to QGCs

Triple Gauge Couplings seem to agree with the SM, within the current experimental precision

WWZ and WW γ measured at expected rates

No sign of unexpected all-neutral couplings

What about the Quartic Gauge Couplings?

Much smaller cross sections

Much less explored before the LHC

Quartic gauge interactions: triple-boson production

One way to probe quartic couplings: look for events with 3 final-state gauge monomorphisms

With leptonic W or Z decays: 4, 5, or 6 leptons

Very low cross sections - a few events expected with all the currently available LHC data

Candidate for *WWZ* production 4 leptons + missing E_T $Z \rightarrow \mu \mu$ $W \rightarrow \mu \nu$ $W \rightarrow e \nu$

Quartic gauge interactions: triple-boson production

Backgrounds from top quark production, diboson **CMS** Supplementary Events production + fake/non-prompt leptons - Data _Z + eµ region 20 Hunt for signal in tails of transverse mass (leptons+missing E_T), or using multi-variate analyses Chang UCSD Data/Pred. CMS 137 fb⁻¹ (13 TeV) Events 35-4/5/6 leptons Data and prediction Same-sign/3 leptons Data ± stat. uncertainty 80-Background ± systematics Triboson signals 60-WWW ($\mu_{WWW} = 1.15^{+0.45}_{-0.40}$) 40-WWZ ($\mu_{WWZ} = 0.86^{+0.35}_{-0.31}$) WZZ ($\mu_{WZZ} = 2.24^{+1.92}_{-1.25}$) 20 ZZZ ($\mu_{ZZZ} = 0.0^{+1.30}_{-0.00}$) Bkg. in same-sign / 3 leptons L [sd] Lost / three leptons 2-Charge mismeasurement W[±]W[±]+jj / tt̄W Pulls Nonprompt leptons $\gamma \rightarrow \text{lepton}$ 2 1 0 A B 1 2 3 4 εε εμ μμ εε εμ μμ εε εμ μμ 5 СЛ o Backgrounds in 4/5/6 leptons leptons leptons Z+II BDT bins Z+eµ BDT bins **#**SFOS 1J m_{ii}-out m"-in tWZ Other ZZ ∎tŧZ WZ Same-sign dilepton 3 leptons 4 leptons

137 fb⁻¹ (13 TeV)

Small excesses over background in several channels - compatible with SM signal!

Quartic gauge interactions: vector-boson scattering

Scattering of 2 vector bosons to produce 2 vector bosons

 $VV \rightarrow VV$

Spectacular signatures:

Typically 2 high energy forward-backward quark jets, in addition to 2 vector bosons

Quartic gauge interactions: WW→WW scattering

Intimately connected to Higgs sector and new physics

SM cross section would grow and become unitarity violating/unphysical at ~TeV scales, unless:

There is a Higgs boson OR other new physics

Signal appears as excess of events with large m(jj) and $\ensuremath{m_{\text{T}}}$

Fit for sum of signal and backgrounds

Now observed with $>5\sigma$ significance at the LHC

Next frontier with more data - probe W polarization for greater sensitivity

Quartic gauge interactions: other VBS processes

What about other vector-boson scattering processes?

More quartic gauge interactions: $\gamma\gamma \rightarrow WW$ scattering

What about processes with *initial-state* photons radiated off of protons?

Special case: usually no forward jets, infer γγ production by *lack* of other activity besides 2 W-bosons

 $\gamma\gamma \rightarrow$ WW studied by CMS and ATLAS, results consistent with the SM

Even more quartic gauge interactions: "Light-by-light" scattering

What about processes with *only* photons: $\gamma\gamma \rightarrow \gamma\gamma$?

Very difficult in normal p-p collisions, so new techniques/detectors developed

Heavy-ion collisions

Look for back-to-back photons with no other activity

SM-like cross section measured, no new physics seen up to ~100 GeV

p-p collisions with new forward proton detectors

No excesses observed from ~300 GeV to ~2 TeV -> limits on anomalous yyyy couplings

Putting it all together: summary of cross sections and anomalous couplings

Production rates via gauge boson interactions

Back to the original question:

Does LHC measure cross sections involving gauge boson interactions at the rates expected from the SM?

So far, yes...

Over almost 6 orders of magnitude!

Rates of VBS/tri-boson processes

What about the very rare processes?

Zoom in on tri-boson production and vector boson scattering

Plot ratio of measurement/SM prediction

Large uncertainties, but so far so good

Anomalous gauge couplings scorecard (I)

LHC exploring all the possible EWK 3boson couplings

Many upper limits placed on anomalous triple-gauge couplings

So far no deviations from the SM!

Anomalous gauge couplings scorecard (II)

LHC exploring all the possible EWK 4-boson couplings

Many upper limits placed on anomalous quartic-gauge couplings

Several for the first time

So far no deviations from the SM!

Electroweak physics - where to go from here?

Electroweak physics - where to go from here?

LHC precision measurements of some SM parameters start to be competitive with the best from e⁺e⁻ colliders

Important impact on global fits and combinations with Higgs, top data

Systematic uncertainties are important: important to improve analysis techniques & detectors

Pattern of gauge boson interactions/anomalous couplings so far agrees with the Standard Model

Including several very rare processes observed for the first time at the LHC

In most cases, sensitivity is to ~TeV scale new physics with large couplings

Results are limited by **statistical uncertainties**: will improve just by collecting more data

LHC Run 3

Run 3 will continue through 2025

More than doubling the Run 2 dataset

In 2022 the LHC restarted for Run 3, after a 3.5 year stop to refurbish and improve equipment

Energy increased to 13.6 TeV

Already large numbers of W and Z

TESTALLING TOL ZUZH IT THE HEAT WEEKS

Beyond Run 3: High-Luminosity LHC

After Run 3, LHC will be upgraded to the "High luminosity LHC"

> ~20x more data expected by the end of the HL-LHC program - probe smaller deviations from the SM

Program of detector upgrades will enable new measurements/ analysis techniques

See upcoming lecture for details

$W/Z/\gamma$ as tools for QCD (time permitting)

$W/Z/\gamma$ as tools for QCD

Single W/Z/ γ 's at the LHC are usually produced by interactions of quarks or quarks+gluons

=> Apart from "purely" electroweak physics, W/Z/γ production can also be used to probe internal structure and dynamics of the proton

W/Z as tools for QCD: PDFs

Major uncertainty in many LHC measurements and searches: "Parton Distribution Functions"

Describe fraction of proton momentum carried by the partons (quarks or gluons)

Better knowledge of PDF's means better predictions for any process involving production by quarks/gluons

Jet production more sensitive to gluon PDFs, Z and W depend on quark PDFs

|Ref|

W/Z as tools for QCD: PDFs

Measure differential cross sections

Separately for W⁺ and W⁻

Different sensitivity to up and down quark PDFs

In invariant mass frapidity for Z (or non-resonant Drell-Yan) $Z \rightarrow |^{+}$ L dt = 33-36 pb⁻¹ Data 2010 (vs = 7 TeV MSTW08 HEBAPDE1 5 Uncorr. uncertaint Total uncertainty Differences between differe PDF predictions 2 2.5 3 3.5 0.5 1.5 ly_l

=> Use data as input to improve PDF fits

W/Z as tools for QCD: Double-parton scattering

Usually only 1 "hard" quark or gluon interaction in a single proton-proton collision

In rare cases can have 2 or more => "Double parton scattering"

Can produce spectacular/"weird" signatures

Potential background to new physics searches, and electroweak measurements

W/Z as tools for QCD: Double-parton scattering

The electroweak sector of the Standard Model has been so far remarkably (ridiculously) successful, even at LHC energies

But attempts to break it are ongoing from all directions

Combination of precision measurements of SM parameters

Searches for excesses in high-energy tails of distributions/anomalous couplings

Close connections to Higgs, top, flavorphysics studies (see upcoming lectures)

Apart from the "pure" electroweak physics, $W/Z/\gamma$ remain important tools to probe the internal structure of the proton

Extra