# HCCCCCCCCCCC

**P. Ferreira da Silva (CERN)** Course on Physics at the LHC LIP, 13<sup>th</sup>-15<sup>th</sup> March 2023

# Outline

- From collision remnants to physics
- Connecting the dots: tracking
- Si-based detectors
- Calorimetry for pedestrians
- Getting data on tape: trigger systems



2<sup>nd</sup> part

# **Calorimetry for pedestrians**

### Recall: we measure what collapses in the detector



# Purpose of a calorimeter

#### Calorimeters measure the total energy of a particle, but they are versatile

- can measure position, angle and timing
- particle identification from shower/cascade properties
- infer energy of neutrinos after energy balance

#### **General properties**

- length of showers induced in calorimeters increase logarithmically with E
- energy resolution improves with E
- fast signals, easy to reconstruct (unlike tracking) ⇒ trigger

#### Almost impossible to do high energy physics without calorimeters

# (a very brief) historical overview

Nuclear Physics in the 50's usage of semi-conductor devices improving the energy measurement of radiation energy

Cosmic Rays (1958) - the first sampling calorimeter

Particle Physics: adoption of electromagnetic and some times hadronic calorimeters as crucial components in experiments

- Uranium/compensation (1975) uniformize response to e/y and hadrons to improve resolution
- 4π calorimeters
- High precision calorimetry with crystals, liquid Argon, scintillating fibers

Particle flow calorimeters for HL-LHC, CLIC/ILC (weighing more on reconstruction than hardware...)



6

# **ATLAS calorimetry system**



# **CMS calorimetry system**

Steel + Quartz fibres ~2,000 Channels

FORWARD CALORIMETER

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO<sub>4</sub> crystals

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

# **Calorimetry in LHCb**



Plastic+metal sandwiches

# **Calorimetry in ALICE**



# **Electromagnetic calorimeters**

#### e/gloose energy interacting with nuclei and atomic electrons



#### e.m. showers will evolve very similarly independently on how they start

• subsequent e or ywill branch according to these interactions

### **Processes initiated by electrons**



0.56cm for Lead

## **Processes initiated by electrons**



# **Processes initiated by photons**

14



# **Electromagnetic showers**

#### High energy e/I will start a cascade of pair production and bremmstrahlung

• multiplicative regime until secondaries start falling below E



e- in bubble chamber (70% Ne: 30% H2) under 3T field

# **Electromagnetic showers**

### High energy e/y will start a cascade of pair production and bremmstrahlung

• multiplicative regime until secondaries start falling below E



showers from two different energy photons in bubble chambers

### A toy model for electromagnetic showers



Start with a pair conversion followed by radiation,...  $E \rightarrow E/2 \rightarrow E/4 \rightarrow ...$ 

Scaling properties

$$N(x) = 2^{x/X_0}$$

$$E(x) = E_0 / 2^{x/X_0}$$

#### Splitting energy reaches EC limit, shower starts to be absorbed

$$x_{max} = X_0 \log_2 \frac{E}{E_c}$$

$$E_{max} = E_0 / E_c$$

not so far from reality

### **Detailed simulation of an electromagnetic shower**



# Spread in the transverse plane

#### Particles disperse with respect to initial axis

decay openings

.

- multiple scattering of charged particles
- yin the region of minimal absorption traveling longer



Define the Moliere radius as

lateral size containing 90% of the shower energy

$$R_M = \frac{21 \ MeV}{E_c} X_0 \propto \frac{A}{Z}$$





### **Electromagnetic energy resolutions**

20



### Some challenges in maintaining energy resolution

#### Intercalibration between cells needs to attain 1% level or better

• use  $\eta/\pi^0 \rightarrow \gamma\gamma$ , Z  $\rightarrow$  ee and  $\phi$  symmetry in minimum bias events

#### Track radiation damage / recovery of the crystals with a laser

• inject light into crystals and normalize to PN diodes





### A comparison of different e.m. calorimeters

| Technology (Experiment)                   | Depth               | Energy resolution                              | Date   |
|-------------------------------------------|---------------------|------------------------------------------------|--------|
| NaI(Tl) (Crystal Ball)                    | $20X_{0}$           | $2.7\%/E^{1/4}$                                | 1983   |
| $Bi_4Ge_3O_{12}$ (BGO) (L3)               | $22X_0$             | $2\%/\sqrt{E}\oplus 0.7\%$                     | 1993   |
| CsI (KTeV)                                | $27X_0$             | $2\%/\sqrt{E}\oplus 0.45\%$                    | 1996   |
| CsI(Tl) (BaBar)                           | 16–18 <i>X</i> 0    | $2.3\%/E^{1/4}\oplus 1.4\%$                    | 1999   |
| CsI(Tl) (BELLE)                           | $16X_0$             | $1.7\%$ for $E_{\gamma} > 3.5 \text{ GeV}$     | 1998   |
| PbWO <sub>4</sub> (PWO) (CMS)             | $25X_0$             | $3\%/\sqrt{E}\oplus 0.5\%\oplus 0.2/E$         | 1997   |
| Lead glass (OPAL)                         | $20.5X_0$           | $5\%/\sqrt{E}$                                 | 1990   |
| Liquid Kr (NA48)                          | $27X_0$             | $3.2\%/\sqrt{E} \oplus \ 0.42\% \oplus 0.09/E$ | 7 1998 |
| Scintillator/depleted U<br>(ZEUS)         | 20-30X <sub>0</sub> | $18\%/\sqrt{E}$                                | 1988   |
| Scintillator/Pb (CDF)                     | $18X_0$             | $13.5\%/\sqrt{E}$                              | 1988   |
| Scintillator fiber/Pb<br>spaghetti (KLOE) | $15X_{0}$           | $5.7\%/\sqrt{E}\oplus 0.6\%$                   | 1995   |
| Liquid Ar/Pb (NA31)                       | $27X_0$             | $7.5\%/\sqrt{E}\oplus 0.5\%\oplus 0.1/E$       | 1988   |
| Liquid Ar/Pb (SLD)                        | $21X_0$             | $8\%/\sqrt{E}$                                 | 1993   |
| Liquid Ar/Pb (H1)                         | $20 - 30X_0$        | $12\%/\sqrt{E}\oplus1\%$                       | 1998   |
| Liquid Ar/depl. U (DØ)                    | $20.5X_0$           | $16\%/\sqrt{E}\oplus 0.3\%\oplus 0.3/E$        | 1993   |
| Liquid Ar/Pb accordion<br>(ATLAS)         | $25X_{0}$           | $10\%/\sqrt{E}\oplus 0.4\%\oplus 0.3/E$        | 1996   |



# Hadronic showers

## What is an hadronic shower?



Charged pions, kaons, protons, neutrons, etc... Products of strong interactions will start "mixed" showers Requires longer containment than e.m showers

### Particle spectra in a proton shower



25

### Particle spectra in a proton shower



26

### Particle spectra in a proton shower



# Hadronic showers are unique

#### There are never two alike and need to be analyzed case-by-case

- hardware compensation: enhance the nuclear energy through materials
- high granularity calorimeter: enable feature extraction and cluster-by-cluster calibration
- dual-readout: measure the e.m. energy fraction
- particle flow: calorimeter identifies particle type, energy used only if no track





e.m. (hadronic) component is shown in red (blue)

### **Containment of an hadronic shower**

The interaction length quantifies the mean distance before undergoing a nuclear interaction

Interaction length ( $\lambda$ ) is significantly larger than the radiation length (X<sub>0</sub>)

$$\lambda = 35 \ A^{1/3} \mathrm{g/cm}^2$$

e.m. shower



hadronic shower



### **Characteristics of different materials**



# **Energy reconstruction I**

### Need to gather energy spread in time: integrate pulse shape by weighting / fitting

- calorimeters often need more time to integrate signals with respect to tracking devices
- hadron showers: slow neutron component can appear significantly delayed in time (>100ns)



# **Energy reconstruction II**

### Need to gather energy spread in space : clustering algorithms are needed

- algorithm needs to be adapted to the particle, segmentation, material upfront, shower components
- often several iterations needed, depending on how busy an event is



typical PF algorithms (implemented in Pandora)

### **Resolutions and response - ATLAS TileCal**

### Typically hadronic calorimeters exhibit

- non-linearity, different response to e/yand hadrons (compensation)
- significantly poorer resolutions compared to e.m. Calorimeters
- Both characteristics are present in the ATLAS TileCal





### **Resolutions and response - CMS HCAL**

- Performance is mainly driven by materials used, segmentation, depth
  - but also material upfront and readout
  - partially compensated by reconstruction (next slide)





### Recall: particle flow algorithm is a reconstruction paradigm



### **Compensating resolution performance with particle flow**

#### Particle flow optimizes the usage of the detector

- most energy energy ends-up being estimated by tracks and the electromagnetic calorimeter
- recover linearity and significantly improve in energy resolution


# CMS High Granularity Calorimeter for Phase-2 of the LHC

Based on a CERN seminar by D. Barney – April 2018

## **High-Luminosity LHC**

### The main physics goal is SM and Higgs coupling measurements at the TeV scale

- Focus on jets: boosted, heavy-flavour, vector boson fusion (forward)
- Unprecedented integrated luminosity 3-4 ab<sup>-1</sup>
- instantaneous luminosity leveled throughout a fill @ 5 x  $10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>  $\Rightarrow \ge 140$  pileup events

### Good jet measurements are crucial at HL-LHC ⇒ focus on <u>calorimetry</u>



## **Drastic change of environment for detectors**



### 78 pileup events in Run 1/2. Expect **140-200 @ HL-LHC**

## Improving jet measurements: two paths

### Dual (or triple) readout calorimeters can identify:

- EM component from Cerenkov light for relativistic particls
- Hadronic component from scintillation light
  - $\Rightarrow$  optimal energy resolution, driven by hardware
  - e.g. **DREAM** calorimeter







### Fine sampling calorimeters loose stochastically in resolution but:

- Allow fine separation of nearby showers
- Imaging from hit spray
  - $\Rightarrow$  fine-grained particle ID, pileup subtraction,
    - driven by software
  - e.g. **CALICE** calorimeter



### Particle flow: calorimeters are integrated in the full detector

### For a Particle-Flow calorimeter

Privilege granularity over energy resolution (recall matching of tracks to calorimetric hits)

- Lateral granularity should be below Molière radius (otherwise obtain large overlapping showers which would render discrimination of signal from pileup impossible)
- Dense absorbers (contain showers) and thin

### Sophisticated software needed!

- but we have come a long way with •
  - heterogenous computing (CPU+GPU)
  - smarter clustering algorithms
  - machine learning regression/classification



Can almost use your eyes to separate the clusters from different particles





# **Designing HGCAL for HL-LHC**



## A 47-layer calorimeter with >6M channels

### **Active Elements:**

- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- Scintillating tiles with SiPM readout in low-radiation regions of CE-H





## A 47-layer calorimeter with >6M channels



- HGCAL covers 1.5 < h< 3.0
- Full system maintained at -30°C
- ~600m<sup>2</sup> of silicon sensors
- ~500m<sup>2</sup> of scintillators
- 6M Si channels, 0.5 or 1.1 cm<sup>2</sup> cell size
  - Data readout from all layers
  - Trigger readout from alternate layers in CE-E and all layers in CE-H
- ~27000 Si modules









## A 47-layer calorimeter with >6M channels



### Dummy cassette is installed in a cold box to study heattransfer characteristics – works well!



## Plans for cassette installation (CE-E)



## **Final assembly steps**



Rescue engineer in the middle! Then attach CE-E to CE-H, then rotate whole CE to vertical for lowering 220 tonnes!

## Lowering to the cavern (100m underground)



### ← Crawler crane (rented)

- ~1400 tonnes, transported in 75 trucks!
- Needs large roof openings
- Can move around the site

### Linear winch crane (custom made) $\rightarrow$

- Similar in principle to original CMS crane
- Calorimeter can be rotated in this system (no need for separate rotating table)



## A glimpse of the on-detector electronics





### Front-end electronics are in charge of the sensor readout

 Energy measured using a 10b <u>fast-shaping ADC</u> (<100 fC), or using a 12b <u>TDC for time-over-threshold (measure "discharge" time</u>, >100 fC)

50

**Time** measured from the moment charge > threshold through TDC O(30 ps)

**Challenging!** Low noise, fast shaping, accommodate data in 12.5 ns latency, high-speed readout, low consumption (<20 mW) high radiation resistence (~2MGy and  $10^{16} n_{eq}/cm^2$ )...

#### Specifically designed for HGCAL with contributes from engineering and physics

### Physics performance: e.m. showers will be narrow



### Physics performance: e.m. showers will be narrow



#### Beam-test results indicate performance within specifications and good agreement with simulation.

## **Physics performance: imaging VBF H** $\rightarrow$ $\gamma\gamma$

#### Photon from H decay (175 GeV) + jet $[2\pi + 1\gamma]$ (720 GeV) Showers from the two photons are visible in the layers of the electromagnetic part - CE-E (mml) L5 L8 L2 Layer 11 Layer 14 Layer 17 L11 L14 L17 $\Delta R \sim 0.2$ -200 、-30 -50 -600 Layer 23 Layer 26 Layer 20 (illus), 1.1. L20 L23 L26 -20 -30

## Physics performance: imaging VBF $H \rightarrow gg$



## A new level of particle flow

### Open door to unleash your imagination

- develop robust (human-driven) clustering algorithms
- aim to finer reconstruction with end-to-end machine learned reconstruction  $\downarrow$ •



### **CMS** Simulation Preliminary

# Getting data on tape: trigger systems

## **Recall: the proton-proton cross section**



# Why do we trigger?

### Data rates at hadron colliders are too high

- most events are expected not to be interesting anyway
- save to tape only relevant physics
- need a trigger = online selection system which reduces rates by a factor of ~10<sup>5</sup>

| Collider | Crossing<br>rate (kHz) | Event size<br>(MB) | Trigger<br>rate | Raw data<br>rate<br>(PB/year) | Data rate<br>after<br>trigger<br>(PB/year) |
|----------|------------------------|--------------------|-----------------|-------------------------------|--------------------------------------------|
| LEP      | 45                     | 0.1                | 5 Hz            | 10 <sup>2</sup>               | ~0.01                                      |
| Tevatron | 2.5                    | 0.25               | 50-100 Hz       | I0 <sup>₄</sup>               | 0.1                                        |
| HERA     | 10                     | 0.1                | 5 Hz            | I0 <sup>₄</sup>               | 0.01                                       |
| LHC      | 40                     | I                  | 100-200 Hz      | 10 <sup>5</sup>               | I                                          |

## How do we trigger?



# Trigger system

**Mass storage** 

Performs real-time selection based on a subset of the data to record Collects the data from all the sub-detectors and trigger systems and sends them to mass storage for offline analysis

# **Readout+decisions=dead-time**

- Signals are random but incoming at an approximate fixed rate
- Need a busy logic
  - Active while trigger decides whether the event should be kept or not
  - Induces a deadtime in the system





System tends to be inefficient for long readout times

## Solution: de-randomize with a buffer

- A fast, intermediate buffer can be introduced
  - Works as a FIFO queue

(First In First Out)

**8663100→ 8663100→** 

- Smooths fluctuations = derandomizes
- Decouples the slow readout from the fast front-end

 A moderate size buffer is able to retain good efficiency



## Trigger system architecture for bunched collisions

- The ADC are synchronous with beam crossings
- Trigger output is stochastic
  - FIFO is needed to derandomize

### ATLAS LHC Run I architecture

- May need to accommodate several levels with increased complexity
- If first layer latency is smaller than bunch crossing than the combined latency is v<sub>L1</sub> x t<sub>L2</sub>



### **Trigger system architecture for bunched collisions**

- The ADC are synchronous with beam crossings
- Trigger output is stochastic
  - FIFO is needed to derandomize

### ATLAS LHC Run I architecture

- May need to accommodate several levels with increased complexity
- If first layer latency is smaller than bunch crossing than the combined latency is v<sub>L1</sub> x t<sub>L2</sub>

### CMS architecture

- Add trigger level between readout and storage
- CPU Farm used for high level trigger
- Can access some/all processed data
- Perform partial/full reconstruction



63

### Be fast = keep it to the point, details come later

### Can only use a sub-set of information

- Typically energy sums, threshold flags, coarser detector, tracklets
- Resolutions (energy and position) are coarser by definition



# Tracking at L1 (muon case)

Reconstruct segments in each muon chamber Combine segments to form track and measure  $p_T$  (rough)





### **Combining information from different sub-detectors**



### Accommodate several sources

- Busy logic needs to be included
- Can perform a global OR
- Or combine certain trigger objects and apply simple topological cuts
- High level quantities (masses, square roots are expensive! Avoid if possible

# **Overall L1 trigger latency**



# **Event building**

- Parallelize the sum of the parts of the event to build = slicing
- At CMS 8 independent "slices" are used in order to achieve a 100 kHz rate



# High level trigger

- After event is built can be shipped to a farm for processing before storage
- Events are independent : easy to parallelize
- Keep out rate at ~300Hz / latency at ~40-50 ms, can afford to use
  - high granularity of the detectors
  - offline reconstruction-like algorithms

### ATLAS HLT farm:





### LHCb readout switch:

## **Trigger/DAQ performance in LHC experiments**

- Typical values for LHC run I
  - May depend on luminosity
- Notice that the final bandwidth has to be kept
  - total trigger rate must not exceed allocated bandwidth
  - prescale triggers if needed

| Collider                         | ATLAS        | CMS | LHCb  | ALICE    |
|----------------------------------|--------------|-----|-------|----------|
| LI latency [µs]                  | 2.5          | 3.2 | 4     | 1.2/6/88 |
| LI output rate [kHz]             | 75           | 100 | 1000  | 2        |
| FE readout bandwidth [GB/s]      | 120          | 100 | 40    | 25       |
| Max. average latency at HLT [ms] | 40 (EF 1000) | 50  | 20    |          |
| Event building bandwidth [ms]    | 4            | 100 | 40    | 25       |
| Trigger output rate [Hz]         | 200          | 300 | 2000  | 50       |
| Output bandwidth [MB/s]          | 300          | 300 | 100   | 1200     |
| Event size [MB]                  | 1.5          | I   | 0.035 | Up to 20 |

# Wrap-up



# **Summary I**

### Hunting for new physics: wide variety of final states to be reconstructed

- general purpose detectors attempt to cover all signatures, rejecting background
- choice of technology: trade-off between particle identification, resolution and budget

### Particle flow as a paradigm

- use the best out of the detectors for optimal performance
- yields a close 1:1 physics reconstruction of the hard process final state

### Magnetic field and tracking play a crucial role and set the base

- B field is at the heart of the experiment
- tracking detectors are at the base of the reconstruction
## **Summary II**

#### Calorimeters make the particles collapse to measure its energy, direction, time

- electromagnetic interactions have scaling properties, easy to reconstruct
- hadronic interactions depend on energy, particle, have distinct properties
- best performance conjugates careful detector design and reconstruction
- calorimeters provide most input to the trigger: coarse, fast information

#### Trigger systems take decisions based on a preview of (parts of) the event

- layered structure to allow to store ~1-1.5MB events at a rate of 300-200 Hz
- first layers usually implemented in hardware, last layer in CPU farms

- W. R. Leo, "<u>Techniques for Nuclear and Particle Physics Experiments</u>", Springer
- H. Spieler, "<u>Semiconductor Detector Systems</u>", Oxford Science Publications
- R. Wigmans, "<u>Calorimetry</u>", Oxford University Press
- Fabjan and Gianotti, "<u>Calorimetry for particle physics</u>", Rev. Mod. Phys. 75, 1243
- Particle Data Group, "<u>Experimental Methods and Colliders</u>", Chin. Phys. C, 40, 100001 (2016)
- CMS Collaboration, "The Phase-2 Upgrade of the CMS Endcap Calorimeter", CMS-TDR-019

## Backup

# JINST 3 (2008) 508004

## The magnet is the heart of an experiment I

#### Goal: measure 1 TeV muons with $\delta pT/pT=10\%$ without charge error

- $\frac{\sigma_{p_T}}{p_T} = \frac{8p_T}{0.3Bl^2}\sigma_s$  this implies ~50µm uncertainty in measuring s
- either use "continuous tracking" or "extreme field"

From Ampere's theorem: 
$$\oint ec{B} \cdot dec{s} = \mu_0 I o B = \mu_0 n I$$

 $\Rightarrow$  n= 2168 (120) turns per coil in CMS (ATLAS)

- special design needed for superconducting cable in CMS
- size limited by magnetic pressure (P≈6.4 MPa)







### The magnet is the heart of an experiment II



|            | ATLAS                                                                                                                                                | CMS                                                                                                                                                                                      |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В          | 0.6T (8 coils, 2x2x30 turns)                                                                                                                         | 4T (1 coil,2168 turns/m)                                                                                                                                                                 |
| Challenges | <ul> <li>spatial/alignment precision over large surface</li> <li>1.5GJ energy stored</li> </ul>                                                      | <ul> <li>design and winding of the cable</li> <li>2.7GJ energy stored</li> </ul>                                                                                                         |
| Drawbacks  | <ul> <li>limited pointing capabilities</li> <li>non-trivial B</li> <li>additional solenoid (2T) needed for tracking</li> <li>space needed</li> </ul> | <ul> <li>limits space available for calorimetry</li> <li>no photomultipliers for calorimeters</li> <li>multiple scattering in iron core</li> <li>poor bending at large angles</li> </ul> |

### Radiation levels: a challenge for detectors and electronics

#### Activation of materials, impurities, loss of transparency/response, spurious hits ...

• additional shielding/moderators needed to limit radiation impact in the detectors



78

#### ~1 million trigger cells (TC) in HGCAL, c.f. <10000 in present CMS endcap calorimeters



Stage-1: Dynamical clustering techniques based on the Nearest Neighbour TCs to generate 2D-clusters in each HGCal trigger layer.

Stage-2: Generation of 3D-clusters relying on the longitudinal development of the shower, exploiting the projected position of each 2D-cluster to identify its direction.

The Stage-1 $\rightarrow$ Stage-2 data transmission is x24 time-multiplexed to allow all data from one endcap to be processed by one FPGA



CERN EP Seminar, April 2018

D. Barney (CERN)