

Higgs properties

Pedro Ferreira da Silva (CERN) - psilva@cern.ch

Why are we so obsessed with the Higgs?

• Is the standard model (SM) really consistent?

- p-value is currently estimated to be ~0.22 (see <u>GFitter</u>)
 - if the Higgs would have been found @ 300 GeV p-value for the SM would be ~3•10⁻⁵
- how fined-tuned are the corrections to the mass?
- how stable is the vacuum generated by the Higgs field?

see more details in R. Gonçalo - Higgs lecture #1 - link

Outline

- From rates to couplings
- Models, properties, and interpretation
- Results: mass, charge, spin and parity, couplings
- Case study: bounding the Higgs width
- Conclusions

From rates to couplings

Higgs production at hadron colliders I

• The inclusive Higgs production is at the level of 20 pb (60 pb) at 8 TeV (14 TeV)

Higgs production at hadron colliders II

Higgs production at hadron colliders III

Higgs decays

- Couplings and kinematics determine the branching ratios
- Prefer bb, ττ, WW final states (most massive particles)
- Decays to gluons and photons
 - possible through loops

• dominated by tops and/or W's

...and possibly new physics?

Signals

- Our experiments **count events.**
- Backgrounds are estimated from data or simulation.
- The **remainder is the signal** \Rightarrow can be compared to theory.

Signals, couplings

- The Higgs gives mass to fermions and vector bosons
- Different couplings at production and decay
- Can we disentangle them?

Signals, couplings and width

- The observed production rate holds, as well, information on the total width Γ
 - depends on the propagator and the couplings of a particle

$$\sigma \propto \int \frac{\mathbf{g_i^2} \cdot \mathbf{g_f^2}}{(s - m_0^2)^2 + \mathbf{\Gamma^2} m^2} ds$$

Signals, couplings and width

- The observed production rate holds, as well, information on the total width Γ
 - depends on the propagator and the couplings of a particle

On-shell production

- lineshape often limited by detector resolution
- knowing the branching ratios and the cross section determines Γ

Signals, couplings and width

- The observed production rate holds, as well, information on the total width Γ
 - depends on the propagator and the couplings of a particle

Models, properties, and interpretation

$$n_{\text{signal}}(k) = \mathcal{L}(k) \times \sum_{i} \sum_{f} \left\{ \sigma_{i} \times A_{i}^{f}(k) \times \varepsilon_{i}^{f}(k) \times \text{BR}^{f} \right\}$$

• The expected signal rates in a given channel (k) depend on the

- integrated luminosity used for the analysis \mathscr{L}
- cross section σ
- branching ratio to the final state used in the analysis BR
- an overall selection efficiency factor A $\times \epsilon$ which depends on the initial and final state

New physics can affect production

16

 $n_{\text{signal}}(k) = \mathcal{L}(k) \times \sum \sum \left\{ \boldsymbol{\sigma}_{i} \times A_{i}^{f}(k) \times \boldsymbol{\varepsilon}_{i}^{f}(k) \times \mathbf{BR}^{f} \right\}$

- Most Higgs production modes are precisely predicted by the standard model
 - uncertainties range from 2-3% (EW productions like VH) to 10% (strong productions like ggH)

Production	Cross section [pb]		Order of	
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	calculation	
ggF	15.0 ± 1.6	19.2 ± 2.0	NNLO(QCD)+NLO(EW)	
VBF	1.22 ± 0.03	1.58 ± 0.04	NLO(QCD+EW)+app.NNLO(QCD)	
WH	0.577 ± 0.016	0.703 ± 0.018	NNLO(QCD)+NLO(EW)	
ZH	0.357 ± 0.015	0.446 ± 0.019	NNLO(QCD)+NLO(EW)	
$ZH: gg \rightarrow ZH$			LO(QCD)	
bbH	0.156 ± 0.021	0.203 ± 0.028	5FS NLO(QCD) + 4FS NLO(QCD)	
ttH	0.086 ± 0.009	0.129 ± 0.014	NLO(QCD)	
tH	0.012 ± 0.001	0.018 ± 0.001	NLO(QCD)	
Total	17.4 ± 1.6	22.3 ± 2.0		

• New physics can alter the SM expectation : model with scale parameter

 $\sigma_i = \boldsymbol{\mu}_{\mathbf{i}} \cdot \sigma_{\mathrm{SM}}$

New physics can affect the decay

 $n_{\text{signal}}(k) = \mathcal{L}(k) \times \sum \sum \left\{ \sigma_i \times A_i^f(k) \times \varepsilon_i^f(k) \times \mathbf{BR}^f \right\}$

• The SM Higgs branching ratios are determined to 1-3% precision

Branching ratio [%]
57.5 ± 1.9
21.6 ± 0.9
8.56 ± 0.86
6.30 ± 0.36
2.90 ± 0.35
2.67 ± 0.11
0.228 ± 0.011
0.155 ± 0.014
0.022 ± 0.001

Again new physics can modify these branching ratios: model with scale parameter

$$BR^f = \mu^{\mathbf{f}} \cdot BR_{\mathrm{SM}}$$

• notice that new decay channels may appear e.g. $BR(H \rightarrow dark matter)$

Deviations are searched relative to the SM expectation.

- Conclusions are only as good
- as the accuracy and precision
- of the numerator and denominator.

$$\mu = \frac{(\sigma \cdot BR)_{\text{observed}}}{(\sigma \cdot BR)_{\text{expected}}}$$

µ is the so-called signal strength

Deviations are searched relative to the SM expectation.

- Conclusions are only as good
- as the accuracy and precision
- of the numerator and denominator.

$$\mu = \frac{(\sigma \cdot \mathrm{BR})_{\mathrm{observed}}}{(\sigma \cdot \mathrm{BR})_{\mathrm{expected}}} \mathrm{Standard} \mathrm{Model}$$

- If the signal strength close to I, observations are close to the SM predictions
- Compatibility with theory depends on the uncertainty
- Conclusion depends on both experimental and theoretical accuracies

- If the signal strength close to I, observations are close to the SM predictions
- Compatibility with theory depends on the uncertainty
- Conclusion depends on both experimental and theoretical accuracies

0.6 4 [mm]

-0.2

0.2

0.4

-0.6

-0.4

$$n_{\text{signal}}(k) = \mathcal{L}(k) \times \sum_{i} \sum_{f} \left\{ \sigma_{i} \times A_{i}^{f}(k) \times \boldsymbol{\varepsilon}_{i}^{f}(k) \times \mathbf{BR}^{f} \right\}$$

- Either they are fully <u>determined in data</u>
 - Integrated luminosity (L) from Van-der-Meer scans
 see e.g. J. Varela lecture #3 on standard model link
 - efficiencies (ε) measured from control regions
 - test dedicated selections in the analysis

Efficiency for the primary vertex selection in $H \rightarrow \gamma \gamma$

 $n_{\text{signal}}(k) = \mathcal{L}(k) \times \sum_{i=1}^{J} \left\{ \sigma_{i} \times A_{i}^{f}(k) \times \boldsymbol{\varepsilon}_{i}^{f}(k) \times \mathbf{BR}^{f} \right\}$

- Either they are fully <u>determined in data</u>
 - Integrated luminosity (L) from Van-der-Meer scans
 see e.g. J. Varela lecture #3 on standard model <u>link</u>
 - efficiencies (ε) measured from control regions
 - test dedicated selections in the analysis
 - e.g. $Z \rightarrow \ell \ell$ used for lepton efficiencies
 - e.g. dijets/top events for b-tagging efficiencies

see e.g. M. Gallinaro - lecture #1 on top physics - link

b-tagging efficiency as function of the transverse momentum

 $n_{\text{signal}}(k) = \mathcal{L}(k) \times \sum \sum \left\{ \sigma_i \times \mathbf{A}_i^f(k) \times \varepsilon_i^f(k) \times \mathbf{B}\mathbf{R}^f \right\}$

- Either they are <u>estimated using simulation</u>
 - acceptance depends mostly on the thresholds
 - dictated by geometry and trigger requirements
 - need to take into account physics
 - vertices at production and decay
 - but also radiation, fragmentation, hadronization, multiple parton interactions, beam remnants (aka the underlying event)
 - and PDFs, QCD scale choices...

Acceptance for different signal $H \rightarrow \gamma \gamma$ hypothesis

 $n_{\text{signal}}(k) = \mathcal{L}(k) \times \sum \sum \left\{ \sigma_i \times A_i^f(k) \times \varepsilon_i^f(k) \times BR^f \right\}$

- Either they are <u>estimated using simulation</u>
 - acceptance depends mostly on the thresholds
 - dictated by geometry and trigger requirements
 - need to take into account physics
 - vertices at production and decay
 - but also radiation, fragmentation, hadronization, multiple parton interactions, beam remnants (aka the underlying event)
 - and PDFs, QCD scale choices...

Acceptance for different signal $A \rightarrow \tau \tau$ hypothesis

 $n_{\text{signal}}(k) = \mathcal{L}(k) \times \sum \sum \left\{ \sigma_i \times A_i^f(k) \times \varepsilon_i^f(k) \times BR^f \right\}$

- In the end there is not a 1:1 relation between what is measured and what can be produced
 - to gain insight into the couplings every contribution needs to be accounted for

Acceptance for different categories in the $H \rightarrow ZZ \rightarrow 4I$ analysis

At the end of the analysis we have a prediction for signal and background

- At the end of the analysis we have a prediction for signal and background
 - $\lambda = n_{\rm signal} + n_{\rm background}$

- At the end of the analysis we have a prediction for signal and background
- $\lambda = n_{\text{signal}} + n_{\text{background}}$ _____20 ⊆______ ______18 $\sqrt{s} = 7 \text{ TeV}, L = 5 \text{ fb}^{-1}; \sqrt{s} = 8 \text{ TeV}, L = 19-20 \text{ fb}^{-1}$ λ is a function of the signal strength • m_H = 125 GeV \sim $\lambda = \lambda(\mu)$ $VH \rightarrow b\overline{b}$ 16 $--- H \to \tau \tau$ **3.8**σ 14 Combined **Counting experiments follow Poisson statistics:** 12 **3.2**σ $\mathcal{L}(\lambda) = \mathcal{P}_{\text{oisson}}(n_{obs}|\lambda) = \frac{\lambda^{n_{obs}} \cdot e^{-\lambda}}{\frac{1}{m_{obs}} \cdot e^{-\lambda}}$ 10 3σ most probable value for μ maximises likelihood standard model 0.6 0.8 0.2 0.4 1.2 1.4 1.6 0 1.8 μ

- At the end of the analysis we have a prediction for signal and background
 - $\lambda = n_{\rm signal} + n_{\rm background}$
 - λ is a function of the signal strength $\lambda = \lambda(\mu)$
- **Counting experiments follow Poisson statistics:**

$$\mathcal{L}(\lambda) = \mathcal{P}_{\text{oisson}}(n_{obs}|\lambda) = \frac{\lambda^{n_{\text{obs}}} \cdot e^{-\lambda}}{n_{\text{obs}}!}$$

- most probable value for μ maximises likelihood
- Easy to change parameters/theory framework
 - probabilities are invariant under change of variable
 see statistics lecture by P. Vischia <u>link</u>

Incorporating uncertainties in the fit I

- Systematic uncertainties affect the baseline prediction
 - can incorporate in the model as scaling factors
 - θ = nuisance parameters = random variables

$$n_{\text{signal}} = n_{\text{signal}}^{0} \cdot (1 + \theta_{\text{pileup}}) \cdot \dots$$

Nuisance value

- Include probability distributions (PDFs) for θ in the likelihood
 - nuisance parameters are allowed to float penalized by a PDF
 - PDFs are educated guesses most of the time

$$\mathcal{L}[\lambda(\mu, \vec{\theta})] = \mathcal{P}_{\text{oisson}}[n_{\text{obs}}|\lambda(\mu, \vec{\theta})] \cdot \prod_{i} \mathcal{P}_{\text{DF}}(0|\theta_{i})$$

Incorporating uncertainties in the fit II

• Profile likelihood ratio test statistics:

- for each likelihood evaluation all systematic uncertainties (nuisances) are varied
- normalise to the likelihood at best fit value
- maximum determines best set of parameters (nuisances are profiled)
- Combined fit for Higgs properties at the LHC
 - >200 channels and >4000 nuisances in the fit

Incorporating uncertainties in the fit III

•

Parameterizing deviations from SM couplings

• Use a strength modified (kappa) of the cross section or the branching ratio

$$\kappa_j^2 = \sigma_j / \sigma_j^{\text{SM}}$$
 or $\kappa_j^2 = \Gamma^j / \Gamma_{\text{SM}}^j$

• When affecting the branching ratios, the width is naturally modified by

$$\kappa_H^2 = \sum_j \mathrm{BR}_{\mathrm{SM}}^j \kappa_j^2$$

• If the Higgs is also allowed to decay to new invisible particles (dark matter?) then the total width is

$$\Gamma_{\rm H} = \frac{\kappa_H^2 \cdot \Gamma_H^{\rm SM}}{1 - {\rm BR}_{\rm BSM}}$$

Deviations in production

- associated productions (VH, ttH) involve direct couplings \Rightarrow single parameter
- loops, internal propagators (ggH,VBF) parameterised as function of particles involved

Production	Loops	Interference	Multip	licative factor
$\sigma(ggF)$	✓	b-t	$\kappa_{\rm g}^2 \sim$	$1.06 \cdot \kappa_{\rm t}^2 + 0.01 \cdot \kappa_{\rm b}^2 - 0.07 \cdot \kappa_{\rm t} \kappa_{\rm b}$
$\sigma(\text{VBF})$	_	_	~	$0.74 \cdot \kappa_{\rm W}^2 + 0.26 \cdot \kappa_{\rm Z}^2$
$\sigma(WH)$	_	-	~	$\kappa_{\rm W}^2$
$\sigma(q\bar{q}\to ZH)$	-	-	~	$\kappa_{\rm Z}^2$
$\sigma(gg \rightarrow ZH)$	\checkmark	Z-t	~	$2.27 \cdot \kappa_{\rm Z}^2 + 0.37 \cdot \kappa_{\rm t}^2 - 1.64 \cdot \kappa_{\rm Z} \kappa_{\rm t}$
$\sigma(bbH)$	_	_	~	$\kappa_{\rm b}^2$
$\sigma(ttH)$	_	_	~	$\kappa_{\rm t}^2$
$\sigma(gb \rightarrow WtH)$	_	W-t	~	$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qb \to tHq')$	-	W-t	~	$3.4 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$

Deviations in decays

- Direct decays (WW, ZZ, etc.) are assigned with a single parameter
- Decays via loops ($\gamma\gamma$, $Z\gamma$) depend on the particles running in the loop

Results: mass, charge, spin and parity, couplings

Mass

45

The two channels with highest resolution are used to measure the mass: 33 and 41

 Energy scale and resolution are the most important systematic effects to understand

Impact of the systematic effects on the mass

- Gain from combining experiments: statistics and partially uncorrelated systematics
- Largest impact from energy scales, as expected

Combined LHC mass measurement

•

 $M_{H} = 125.09 \pm 0.21$ (stat.) ± 0.11 (syst.) GeV

- Tensions between channels have different signs in the different experiments
- Differences are compatible with statistical fluctuations
- Final result is still statistically limited

Latest news on mass measurement

see details in <u>HIG-16-041</u>

Charge

this one is easy

J^P (spin, parity)

- No direct measurement of J^P
- Use dedicated distributions to test different hypothesis
- No other hypothesis than the standard model is favoured \Rightarrow JP=0⁺

Signal strength per production/decay tags

51

• Signal strengths in different channels are consistent with I (SM)

Latest news on the top Yukawa coupling

- Despite being the largest of the couplings it is challenging to measure λ_t directly
- Combine several analysis benefiting either from:
 - gammo g 00000 large yields ($H \rightarrow bb/\tau\tau$) • - H q, medium rate/purity ($H \rightarrow WW$) • 0000 q 00000 high purity $(H \rightarrow ZZ, \gamma \gamma)$ • LHC Run1 ATLAS ATLAS bb CMS ATLAS ATLAS lep CMS ATLAS ATLA CMS γγ CMS Significance observed 3.3σ 41 expected 2.5σ CMS -2 2 3 see details in <u>HIG-16-020</u> <u>HIG-16-041</u> <u>HIG-17-004</u> μ(ttH)

Testing production modes per final state

53

ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

Couplings to fermions and bosons I

Use kappa modifiers to parameterise both production and decay modes

54

 Simplify to test separately couplings to fermions and to vector bosons

- All results in agreement with each other
 - incoherent results for negative k scenario

Combination of all channels fully compatible with the SM hypothesis

Couplings to fermions and bosons II

Using separate k for the most massive particles

• All in agreement with the SM

- sligthly lower coupling for b (< 2σ deviation)
- not yet sensitive to muons

- Notice that
 - for gauge bosons $\kappa_V = \text{vev} \times m_V^{2\epsilon} / M^{1+2\epsilon}$
 - for fermions $\kappa_f = \text{vev} \times m_f^{\epsilon} / M^{1+\epsilon}$
 - in the SM ϵ =0 and vev=M=246 GeV

Couplings to fermions and bosons II

Beyond the standard model contributions I

- The total width can't be extracted from σ .BR measurements
 - test BR_{BSM} assuming couplings to vector bosons are reduced in strength
 - alternatively assume no new decays and test heavy particles in loops (gg and $\chi\chi$)

Beyond the standard model contributions II

• Test modifications in the two main loops: gluon-gluon fusion and $H \rightarrow \gamma \gamma$ decays

- tree level couplings are assumed to be SM-like
- additional heavy fermions or a H^+ would modify the effective gluon or photon coupling

Generic parameterisations

Ratios are useful to cancel partially the uncertainties

•

- use $gg \rightarrow H \rightarrow ZZ$ as reference (cleanest channel, lower systematics)
- ratios of cross sections or of coupling modifiers show no significant deviations from SM
- largest deviation in BR^{bb}/BR^{ZZ} due to large ZH and ttH observed (in particular in CMS)

Case study: bounding the Higgs width

Higgs off-shell production and decay

61

Although the SM Higgs is expected to be very narrow ~8% production is off-shell

- mixed effect of production and decay with enhancements at $2m_V$ and $2m_t$ thresholds
- modelling initially implementation in gg2VV by Kauer and Passarino, JHEP 08 (2012) 16
- follow-up Caola and Melnikov PRD88 (2013) 054025, Campbell et al arXiv:1311:3589

Higgs off-shell production and decay

Although the SM Higgs is expected to be very narrow ~8% production is off-shell

- mixed effect of production and decay with enhancements at $2m_V$ and $2m_t$ thresholds
- modelling initially implementation in gg2VV by Kauer and Passarino, JHEP 08 (2012) 16
- follow-up Caola and Melnikov PRD88 (2013) 054025, Campbell et al arXiv:1311:3589

Analysis strategy

Search for anomalous ZZ production through gluon-gluon and vector boson fusion

Inclusive final state observed (4 ℓ or $2\ell 2\nu$)

- Parametrisation for expected event yields contains
- separate terms for signal, continuum and interference
- separate gg and VBF components
- profile likelihood fit is performed to different distributions

$$\begin{split} \mathcal{P}_{\text{tot}}^{\text{off-shell}}(\vec{x}) &= \left[\mu_{\text{ggH}} \times (\Gamma_{\text{H}}/\Gamma_{0}) \times \mathcal{P}_{\text{sig}}^{\text{gg}}(\vec{x}) + \sqrt{\mu_{\text{ggH}} \times (\Gamma_{\text{H}}/\Gamma_{0})} \times \mathcal{P}_{\text{int}}^{\text{gg}}(\vec{x}) + \mathcal{P}_{\text{bkg}}^{\text{gg}}(\vec{x}) \right] \\ &+ \left[\mu_{\text{VBF}} \times (\Gamma_{\text{H}}/\Gamma_{0}) \times \mathcal{P}_{\text{sig}}^{\text{VBF}}(\vec{x}) + \sqrt{\mu_{\text{VBF}} \times (\Gamma_{\text{H}}/\Gamma_{0})} \times \mathcal{P}_{\text{int}}^{\text{VBF}}(\vec{x}) + \mathcal{P}_{\text{bkg}}^{\text{VBF}}(\vec{x}) \right] \\ &+ \mathcal{P}_{\text{bkg}}^{q\bar{q}}(\vec{x}) + \dots \end{split}$$

Signal models

- ggH modelled with gg2VV or MCFM (m_H=125.6 GeV)
 - inclusive generation: Higgs, continuum and interference
 - dynamic renormalisation and factorisation scales := $m_{ZZ}/2$
 - scaled with NNLO k-factors for gg \rightarrow VV as function of m_{ZZ} Bonvini et al. PRD88 (2013) 034032, Passarino <u>arXiv:1312.2397</u> 26

- **VBF** production is generated with Phantom or Madgraph
- expect to yield ~10% in the high mass regime
- inclusive generation, as in gg case
- no dynamical scaling is applied on VBF models

Discriminators used in the $2\ell 2\nu$ analysis

PLB 736 (2014) 64

- Analysis has been checked inclusively and binned according to the jets
 - VBF category has priority, selected with M_{jj} >500 GeV, $\Delta\eta$ >4 + central jet veto: use E_T^{miss}
 - if no VBF jet count jets with pT>30 GeV : use transverse mass
- Data is in agreement with the expectations, in all the categories

Discriminators used in the 4ℓ analysis

Use a matrix-element likelihood approach (MELA)

٠

- use information about Z masses and angles in the CM frame
- optimize gg \rightarrow ZZ separation according to expected sensitivity for Γ

Results

• Both channels are combined to set limits

Г_н < 5.4 Г_н^{ѕм} @ 95% СІ

still allowing large room for BSM contributions

- Observed limits are overall stringent then expected
 - improved agreement with NLO EWK corrections (WZ/ZZ production)
 - indicative that higher order corrections are non-negligible?

		CMS	19.7 fb ⁻¹ (8 TeV) – 5.1 fb ¹ (7 TeV)
∆ InL	10	4/ observed 4/ oxpected	
ς '	8	2/2v + 4/ _{on-shell} obse 2/2v + 4/ _{on-shell} exper Combined ZZ obser	rved cted /ed
	6	$- H \rightarrow ZZ$	
S	4		95% CL
	2		68% CL
le?	0	0 10 20 3	0 40 50 60
			⊥` _H (MeV)

Analysis	Observed/	95% CL limit on	95% CL limit on	Г _Н (MeV)	$\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}$
-	Expected	$\Gamma_{\rm H}$ (MeV)	$\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}$		
4ℓ	Expected	42	10.1	$4.2^{+17.3}_{-4.2}$	$1.0^{+4.2}_{-1.0}$
	Expected (no syst.)	41	10.0	$4.2^{+17.1}_{-4.2}$	$1.0^{+4.1}_{-1.0}$
	Observed	33	8.0	$1.9^{+11.7}_{-1.9}$	$0.5^{+2.8}_{-0.5}$
$4\ell_{\text{on-shell}} + 2\ell 2\nu$	Expected	44	10.6	$4.2^{+19.3}_{-4.2}$	$1.0^{+4.7}_{-1.0}$
	Expected (no syst.)	34	8.3	$4.2^{+14.1}_{-4.2}$	$1.0^{+3.4}_{-1.0}$
	Observed	33	8.1	$1.8^{+12.4}_{-1.8}$	$0.4^{+3.0}_{-0.4}$
Combined	Expected	33	8.0	$4.2^{+13.5}_{-4.2}$	$1.0^{+3.2}_{-1.0}$
	Expected (no syst.)	28	6.8	$4.2^{+11.3}_{-4.2}$	$1.0^{+2.7}_{-1.0}$
	Observed	22	5.4	$1.8^{+7.7}_{-1.8}$	$0.4^{+1.8}_{-0.4}$

PLB 736 (2014) 64

I 50x more stringent than from on-shell line-shape measurement

Conclusions

Conclusions

• All LHC Run I results point to a SM like Higgs

- Run 2 results: direct evidence for ttH, precise m_H, more to come
- For couplings we haven't yet entered precision era
 - more data is needed as well as better theory predictions
 - couplings to tops, muons still to be established at the LHC
 - others will be impossible ath the LHC (light quarks, electrons)
- Initial interpretations based on simplified frameworks
- There is still a long way to go to understand the Higgs sector
 - all that is needed is one small deviation from the SM predictions

