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Important information:

What is in this lecture:

QC Algorithms for experimental event reconstruction

Examples of QC for experimental data analysis

What is not in this lecture:

QC and QFT aspects

QC and LTG applications
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Classical coin tossing

Classical computation is based on the idea of binary digit or bit
as the basic unit of information. The bit represents a logical
state with only one of two possible values of a physical system
which we denote as true or false, ”0”or ”1”.

Let us start with a very simple such system, a coin:

0 ” HEADS; 1 ” TAILS

With this very simple system we can already do the logical
operation NOT (or ␣):

␣HEADS ” TAILS

␣TAILS ” HEADS
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Classical coin tossing

Let us introduce randomness in our description: a bit can have
probability p of being HEADS and probability p1´ pq of being
TAILS with p P R, 0 ď p ď 1.
Let us borrow Dirac’s notation (|0y ” HEADS, |1y ” TAILS)
and write the state of the coin at a given moment by

|coiny “ p |0y ` p1´ pq |1y .

Using (a bit forcing . . .) the notation we say that the coin is the
(classical) superposition of the two outcomes |0y and |1y.
If it is a fair coin we know that after tossing many times the
state of the system, before the next tossing, is

|coiny “
1

2
|0y `

1

2
|1y .

This conveys all of our knowledge about the system at that
moment.
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Classical coin tossing

We then throw the coin and (classically) observe the result.
The coin will be either in the state |0y ”HEADS or in the state
|1y ”TAILS.

We say (somewhat abusively...) that our observation (or
measurement) has collapsed the state of the coin into one
of the basis states |0y or |1y.

But what happens if we do not observe the result?
Since it is a 2-state system, all we know is that the possible
outcomes are |coiny and ␣ |coiny. But ␣ |coiny “ |coiny and
therefore the state after the tossing is

|coiny1 “
1

2

ˆ

1

2
|0y `

1

2
|1y

˙

`
1

2

ˆ

1

2
|0y `

1

2
|1y

˙

“ |coiny .

The system remains in the superposition state, in
agreement with classical probability theory.
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Classical coin tossing

Any physical operation on the coin must preserve the
observation of either |0y or |1y preserving at all times the “unit
norm” of the bit state, that is, p0 ` p1 “ 1.

Exercise: Prove that the most general linear transformations
that keep the unit norm are stochastic matrices, that is, ma-
trices of non-negative real entries where every column adds
to unity.

For example, the stochastic matrix corresponding to the coin
toss is

TOSS “
1

2

„

1 1
1 1

ȷ

ñ TOSS |0y “ TOSS

„

1
0

ȷ

“
1

2

ˆ

|0y`|1y

˙
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Classical coin tossing – 2 bit states

We can also throw 2 coins at the same time. The possible
outcomes are |00y, |10y, |01y and |11y, where the first position
corresponds to coin 1, while the second corresponds to coin 2.
The general 2-bit state is

|2 coinsy “ p00 |00y ` p01 |01y ` p10 |10y ` p11 |11y ,

where all pij P R and

p00 ` p01 ` p10 ` p11 “ 1 .
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Classical coin tossing – 2 bit states

If the two bits are independent the probability Ppx , yq of
observing x in the first bit and y in the second bit is equal to
the product of probability Ppxq of observing outcome x in the
first bit and probability Ppyq of observing y in the second bit
(tensor product rule for composite systems):

Ppx , yq “ Ppxq ˆ Ppyq .

This implies that if |coin1y “ p |0y ` p1´ pq |1y and
|coin2y “ q |0y ` p1´ qq |1y, then

|2 coinsy “

ˆ

p |0y ` p1´ pq |1y

˙ˆ

q |0y ` p1´ qq |1y

˙

“

“pq |00y ` pp1´ qq |01y ` p1´ pqq |10y ` p1´ pqp1´ qq |11y .

Exercise: Verify that probabilities add to unity.
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Quantum coin tossing

At the quantum level information is coded in qubits. Again the
(quantum) state of the coin is of the form

|coiny “ α |0y ` β |1y ,

but now α, β P C and the probabilities of the outcomes are

Pp|0yq “ |α|2 ,

Pp|1yq “ |β|2 .

Thus
|α|2 ` |β|2 “ 1 .

Therefore, any physical operation must preserve the 2-norm of
the state.
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Quantum coin tossing

The most general linear transformations compatible with this
rule are no longer stochastic matrices, but unitary matrices.
One example is the so-called Hadamard gate:

H “
1
?
2

„

1 1
1 ´1

ȷ

“
1
?
2
pσx ` σzq

where σx and σz are Pauli matrices.

Physically it is easy to visualize the action of the Hadamard
gate. Consider, in a given light (polarization) reference frame,
two states of vertical and horizontal polarization

|Òy “

„

1
0

ȷ

, |Ñy “

„

0
1

ȷ

; H |Òy “
1
?
2
|Òy´

1
?
2
|Ñy “ |Ôy

The Hadamard gate is equivalent to a rotation by 450.
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Quantum coin tossing

Let us now see the result of successive applications of the
Hadamard gate to the initial state |0y. Again we can use the
representation

|0y :“

„

1
0

ȷ

; |1y :“

„

0
1

ȷ

.

Now:

H |0y “
1
?
2
p|0y ` |1yq .

So far this is equivalent to the TOSS operator on a classical
bit. The outcomes 0 and 1 occur with a probability
p1{
?
2q2 “ 50% each.
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Quantum coin tossing

But:

H |0y “
1
?
2
p|0y ` |1yq ; H |1y “

1
?
2
p|0y ´ |1yq ;

H pH |0yq “
1
?
2
pH |0y ` H |1yq “

1

2
p|0y ` |1yq `

1

2
p|0y ´ |1yq “

“ |0y .

H pH |1yq “
1
?
2
pH |0y ´ H |1yq “

1

2
p|0y ` |1yq ´

1

2
p|0y ´ |1yq “

“ |1y .
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Quantum coin tossing

Classical Quantum

bits qbits
In the quantum case the paths leading to outcome 1 interfere
destructively, while the paths leading to outcome 0 interfere
constructively.

The fact that we have constructive and destructive interference
is due to the nature itself of QM. We will now see the
importance of this fact for Quantum Computing.
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A first glance at Quantum Computing

Consider a function over the alphabet t0, 1u to itself,
f pxq : t0, 1u Ñ t0, 1u. The function is defined as

constant: if f p0q “ f p1q “ 0 _ f p0q “ f p1q “ 1;

balanced: if f pxq “ x _ f pxq “ ␣x .

Problem: Using only this information determine whether a
given function f pxq is constant or balanced.

Notice that f can be very complicated and take a lot of time to
compute!
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A first glance at Quantum Computing

Classical solution:

if f(0) = 0:

if f(1) = 0:

print("Constant")

else:

print("Balanced")

else:

if f(1) = 0:

print("Balanced")

else:

print("Constant")

Function f must be evaluated twice.
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The Deutsch-Josza algorithm

Quantum solution (Deutsch-Josza algorithm):

Let’s go step by step:

Step1 - Input: |xy “ |0y; ancilla qubit |1y. Initial 2-qubit
state |01y:

|φ0y “ |01y “

»

—

—

–

0
1
0
0

fi

ffi

ffi

fl

“00”
“01”
“10”
“11”
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The Deutsch-Josza algorithm

Quantum solution (Deutsch-Josza algorithm):

Step 2 - Hadamard 1: Apply a Hadamard gate to both
qubits:

|φ1y “ |H.0,H.1y “
|0y ` |1y
?
2

b
|0y ´ |1y
?
2
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The Deutsch-Josza algorithm

Quantum solution (Deutsch-Josza algorithm):

Step 3: Tricks of the trade

Before we embark on the rest of the algorithm, let us look at
one crucial part: the application of the function f through the
operator Uf and the XOR operation ‘ between the 2 qubits.

Let us look again at |φ1y. The application of the operations to
one of the terms in the direct product yields, for instance,

|0yb
|0‘ f p0qy ´ |1‘ f p0qy

?
2

“

$

&

%

|0y b |0y´|1y
?
2

ð f p0q “ 0 ,

|0y b |1y´|0y
?
2

ð f p0q “ 1 .

This can be written, for all terms

p´1qf pxq |xy b
|0y ´ |1y
?
2

.
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The Deutsch-Josza algorithm

Quantum solution (Deutsch-Josza algorithm):

Step 3: Tricks of the trade

So, after this operations we get the full state

|φ2y “
p´1qf p0q |0‘ f p0qy ´ p´1qf p1q |1‘ f p0qy

?
2

b
|0y ´ |1y
?
2

Taking into account all possibilities for function f pxq (constant
or balanced), we get:

|φ2y “

$

&

%

p˘1q |0y`|1y
?
2
b

|0y´|1y
?
2
ð f is constant

p˘1q |0y´|1y
?
2
b

|0y´|1y
?
2
ð f is balanced
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The Deutsch-Josza algorithm

Quantum solution (Deutsch-Josza algorithm):

Step 4 - Hadamard 2: Apply a Hadamard gate again to the
first qubit:

|φ3y “

$

&

%

p˘1q |0y b |0y´|1y
?
2
ð f is constant

p˘1q |1y b |0y´|1y
?
2
ð f is balanced
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The Deutsch-Josza algorithm

Quantum solution (Deutsch-Josza algorithm):

Step 5 - Final result (& surprise!): Let us look closely at our
result:

|φ3y “

$

&

%

p˘1q |0y b |0y´|1y
?
2
ð f is constant

p˘1q |1y b |0y´|1y
?
2
ð f is balanced

1 If we now measure the first qubit only this is what
happens:

if the outcome is |0y the function f is constant;
if the outcome is |1y the function f is balanced;

2 The function f has been evaluated only once in the whole
process. Since this can be the major time/resources
overhead in the calculation we can achieve a major
speedup compared to the classical case
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Quantum Computing models

In the Deutsch-Josza algorithm we have used a universal
quantum gate-based model similar to the classical computing
model. However this is not the only possible approach for QC.
We have also the adiabatic quantum computing model

Quantum Adiabatic Theorem:

Given a time-varying Hamiltonian, Hptq, which is equal to Hi

at t “ ti , and subsequently Hf at some later time, t “ tf , then
if the system is initially in the ground-state of Hi , and as long
as the time-evolution of the Hamiltonian is sufficiently slow,
the state is likely to remain in the ground-state throughout the
evolution, therefore being in the ground-state of Hf at t “ tf .

If a quantum system starts in a ground-state, provided we
evolve the state slowly, it is likely to remain in a
ground-state.
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Quantum Computing models

Adiabatic quantum computing (AQC) is also a universal
computational model, and in terms of computational
complexity is polynomially equivalent to gate-based quantum
computing.

To use the AQC we need to specify:

An initial Hamiltonian, Hi , whose ground-state is easy to
prepare.

A final Hamiltonian,Hf , whose ground-state encodes the
solution to the problem of interest.

An adiabatic evolution path, sptq where sp0q “ 1 and
sptf q “ 0, which defines the Hamiltonian evolution:

Hptq “ sptqHi `

ˆ

1´ sptq

˙

Hf .

Example, sptq “ 1´ t{tf : Hptq “ p1´ t{tf qHi ` t{tfHf .
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Quantum Computing models

AQC is often used in optimization problems in which we try to
find an x such that a given function f pxq : Rn ÞÑ R is
minimised.

The optimisation can be constrained by inequality and/or
equality constraints, i.e., finding x in the range 0 ď x ď 0 s.t.
f pxq is minimised.

The minimum can be unique (convex optimization), but often
there are several minima and we look for the global minimum.
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Quantum Computing models

Finding the right path sptq can be achieved using a
metaheuristic.

A metaheuristic is a search policy that explores the optimisation
function, f pxq, by evaluating it at certain values of x .

There are many metaheuristic algorithms which decide at
which value of x we should evaluate f pxq given the history of
function evaluations.

All are based on the same principle: good solutions are likely
to be near other good solutions.

This implies that the function is smooth.

A well-known (and widely used) metaheuristic is the the
Markov chain Monte Carlo (MCMC) of which the
Metropolis algorithm is one example.
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Quantum Computing models

Quantum annealing is set-up in the following way:

We have a “final” Hamiltonian, Hf , whose ground-state
encodes the solution of an optimisation problem.

We have a transverse field Hamiltonian, HT , that does
not commute with Hf .

Starting in an arbitrary initial state, we evolve the system
according to

Hptq “ Hf ` ΓptqHT

where Γptq is the transverse field coefficient, which is
initially very high, and reduces to zero over time.

Quantum annealing is a metaheuristic, which starts in an
arbitrary initial state. The transverse Hamiltonian explores the
optimisation surface until the final Hamiltonian is reached.
(This is the method used by D-Wave)
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How a typical HEP detector looks like

A HEP detector is a
multi-layered device designed to
detect different objects

One needs to detect both
charged and neutral particles,
which requires different
technologies

“Particles” leave signals on a
given position at a given time
and from these signals one must
reconstruct their trajectories.

The presence of a magnetic field
is extremely important for
reconstruction.
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Types of objects

Leptons (electrons, muons, taus)

Photons, W, Z, Higgs

Neutral hadronic particles (e.g. neutrons, neutral pions,
quarkonia)

Charged hadrons

Jets

. . .
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Problems in data reconstruction
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What is tracking

The goal of tracking is to reconstruct the particles’ tracks from
the event record.
Given that in real experiments an event can contain several
thousand hits, most combinations of hits (track candidates)
will not correspond to an actual particle. Therefore, we need
efficient algorithms to be able to reconstruct the tracks in a
reasonable time.

First question that comes to mind:

Is it useful, in the present technological status, to
use a quantum computer at all stages of track re-
construction?

It is possible to answer this question using a complexity
analysis.
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What is tracking

The current tracking methods can be broadly classified into 2
classes:

Global methods treat all hit information in an equal and
unbiased way and are essentially clustering
algorithms in some feature space. All the
quantum approaches so far were based on global
methods.

Local methods use information from close hits to create a
track proposal.

Because global methods can be very inefficient in terms of
speed, local methods are still the standard at several
reconstruction programmes in high-energy physics. We will
focus here on local methods.
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What is tracking

There are four fundamental computational routines in every
local tracking method:

1 seeding: form initial rudimentary track candidates, called
seeds, using just a few hits

2 track building:extrapolate seeds’ trajectories along the
expected path and build track candidates by adding
compatible hits from successive detector layers.

3 cleaning: removes track candidates that are too similar
(too many common hits)

4 selection: only the track candidates that respect some
quality criteria are accepted
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The tracking problem

Definition: For two functions f , g : N ÞÑ R we say that
f “ Opgq if DC , x0 ą 0 : @x , px ą x0 ð f pxq ă C .gpxqq.
We write f “ Ωpgq if g “ Opf q. We say that f “ Θpgq
if f “ Opgq and g “ Opf q. By “constant time”, we mean
Op1q.

For complexity analysis we only consider the dependence on the
variable n, the number of particles.

The data in the event record also depends on quantities like the
number of layers of the detector, the granularity of the sensors,
or the efficiency of the detectors. But these are fixed from the
experimental hardware and do not vary from event to event.

On the other hand, we expect the average n to grow as we
increase the beam’s instantaneous luminosity.
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The tracking problem

We require the granularity of the sensors to be high enough
such that each detected hit can always be differentiated from
others. At every layer, we identify the hits with labels from
t0, . . . , n ´ 1u, using the notation ml ,j for the coordinates of
j-th hit in layer l . It is possible that some hits are not
measured at all due to sensor inefficiencies, that is, we do not
necessarily have a hit ml ,j for every pair pl , jq.

We will focus on the Combinatorial Track Finder algorithm
(CTF).
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The tracking problem

Recommended reading: D. Magano, A. Kumar, M. Kālis, A.
Locāns, A. Glos, S. Pratapsi, G. Quinta, M. Dimitrijevs, A.
Rivošs, P. Bargassa, J. Seixas, A. Ambainis, and Y. Omar,
Quantum speedup for track reconstruction in particle
accelerators, Physical Review D 105, 076012 (2022).
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The tracking problem: conclusions

The reached quantum speedups are evidently mild. We
conjecture that they are the best possible while constrained to
matching the exact output of the corresponding classical
algorithm (up to bounded-error probability) at arbitrarily fine
scales. In other words, the direct quantization of (local)
tracking methods may not be the best path to establish a
significant advantage in quantum computing for HEP problems.
Instead, one may find more success by breaking the direct
correspondence with the classical setting and designing
completely new tracking algorithms that inherently take
advantage of the features of quantum processors.

Moreover, our comprehensive analysis of the CTF algorithm
reveals that classical improvements to the computational
complexity are also possible.
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How a (multi-)jet event looks like
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How are jets reconstructed classically

Let us look at the next-to-leading process e`e´ Ñ qq̄g . The
cross section is

1

σ

B2σ

Bx1Bx2
“ CF

αs

2π

x21 ` x22
p1´ x1qp1´ x2q

where x1, x2 are the quark momentum fractions, CF is a
constant associated with the group structure and αs is the
strong coupling constant.
It explodes as xi Ñ 1 corresponding to a soft gluon (collinear
with one of the quarks).
If we assume that quarks and gluons fragment collinearly into
hadrons then the preference for the gluon to be soft implies
that the two-jet-like structure of the lowest order is maintained
at Opαsq.
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How are jets reconstructed classically

If, on the other hand we require that the gluon is well
separated in phase space from the quarks (3-jet event), then
the singular regions of the matrix element are avoided and the
cross section is suppressed relative to the lowest order by one
power of αs . This qualitative result is valid to all orders in
perturbation theory.
The amplitudes for multiple gluon emission contain the same
type of singularities as those that appear at first order, which
leads to a final state which is predominantly 2-jet-like with a
smaller probability (determined by αs) for 3 or more
distinguishable jets. This justifies some choices in the following.

40 / 81



Introduction

The classical
and quantum
representati-
ons

A first glance
at QC

Object
reconstruction

Tracking

Jets

Quantum
algorithms:
adiabatic
approach

Quantum
algorithms:
digital
approach

How are jets reconstructed classically

To make this quantitative we need to define a jet measure,
that is, a procedure to classify a (experimental, hadron) final
state according to the number of (theoretical quark or gluon)
jets it contains.
In order to be useful, this procedure must yield total cross
sections free of soft and collinear singularities when calculated
in perturbation theory and should be insensitive (as much as
possible) to the non perturbative fragmentation of quarks and
gluons into hadrons.
One of the first attempts was done by Sterman and Weinberg
in 1977. In their picture a final state is defined as 2-jet like if
all but a fraction ε of the total available energy is
contained in a pair of cones of (fixed) half angle δ.
This procedure is not suited to analyse multi-jet final states.
One reason is that fixed-angle cones provide an inefficient
tiling of the phase space 4π angle.
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The kt and anti-kt algorithms

In the kt and anti-kt algorithms (M. Cacciari et al
JHEP04(2008)063) one introduces distances dij between
entities (particles, pseudojets) i and j and diB between entity i
and the beam (B).

if dij is the smallest distance ñ recombine entities;

if diB is the smallest distance ñ entity is a jet ñ remove
from list of entities;

repeat until no entities are left.
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The kt and anti-kt algorithms

The difference between kt , anti-kt & Cambridge/Aachen
algorithms lays in the definition of distance:

dij “ minpk2pti , k
2p
ti q

∆2
ij

R2
,

diB “ k2pti ,

∆2
ij “ pyi ´ yjq

2 ` pϕi ´ ϕjq
2 ,

yi , ϕi , kti rapidity, azimuthal angle and transverse momentum
of particle i . R is the radius parameter and the parameter p
governs the relative power of the energy versus geometrical
(∆ij) scales.
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The kt and anti-kt algorithms

p “ 0: Cambridge/Aachen algorithm;

p “ 1: Inclusive kt algorithm. What matters is the
ordering between particles and for finite ∆ this is
maintained @p ą 0.

p ă 0: The behaviour with respect to soft radiation will
be similar for all p ă 0. The algorithm with
p “ ´1 corresponds to the anti-kt jet-clustering
algorithm.

The anti-kt algorithm is known to be computationally very
efficient.
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Quantum adiabatic approach

As the center of mass energy and/or luminosity increases in
future high-energy particle accelerators, the computational
resources demand is set to increase drastically, resulting in the
near future in a predicted „ 10X increase in both pile-up, from
ă µ ą„ 20 to ă µ ą„ 200, and subsequent produced particle
multiplicity. As a consequence, event reconstruction, and in
particular jet clustering, is bound to become an even more
complex combinatorial problem, with a significant increase in
final-state number of particles N to be clustered. The amount
of clustering possibilities will increase thus challenging present
day computing resources.
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Quantum adiabatic approach

As an example, take the case of a 2-jet event in a e`e´

collision. The e`e´ annihilate (given that they possess
opposite momenta, charge, and the same energy), and end up
emitting a qq̄ pair, through either a virtual Z 0 gauge boson or
a virtual photon.
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Quantum adiabatic approach

Our goal is to map a collection of N particles’ momentum
vectors tp⃗iu, corresponding to N final-state particles, onto a set
of output final jets, tj⃗ku (here with k P t1, 2u). All these
particles are assumed to originate from the same point in
space, and should be sorted into the relevant jet clusters,
adequately recombined into the jet’s final total momenta, j⃗k .
Starting from the assumption that N particles are to be
assigned to K “ 2 jets, it is conceptually more intuitive to
express the objective function in terms of Ising variables
si “ ˘1:

si “ `1 particle i P j1;

si “ ´1 particle i R j1 ñ i P j2;
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Quantum adiabatic approach

We start by writing a (Ising) general objective function ansatz :

H “
1

2

N
ÿ

i ,j“1

dpp⃗i , p⃗jqsi sj , (1)

where dpp⃗i , p⃗jq represents a dissimilarity metric.

If the dissimilarity dpp⃗i , p⃗jq between two particles p⃗i and p⃗j
is large, si and sj tend to take opposite signs ñ assigned
to different clusters.

If dpp⃗i , p⃗jq is small, si and sj take the same value and are
assigned to the same cluster. Since si can never be set to
zero there is only one si per particle for the N particles.

Each particle is thus assigned to one and only one cluster.
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Quantum adiabatic approach

The factor 1{2 accounts for the symmetric nature of the
dissimilarity metric dpp⃗i , p⃗jq “ dpp⃗j , p⃗i q in the sum.
Since we have an si variable, and thus a qubit per particle, we
end up with a qubit usage OpNq, representative of the N
final-state particles being clustered.
When choosing dpp⃗i , p⃗jq, a standard Euclidean distance
metric is not the best choice:

Take two soft particles with momenta p⃗i and p⃗j belonging
to different jets. These are registered as being closer to
the vertex than their hard companions, that is, they
possess a smaller momentum norm relative to the others.

In the cases where the energy gap is sufficiently large, the
minimization process will be harmed since dpp⃗i , p⃗jq is
smaller relative to the average d , thus erroneously
grouping p⃗i and p⃗j together.
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Quantum adiabatic approach

Goal for the dissimilarity function:
as dpp⃗i , p⃗jq increases/decreases the larger/smaller the
output energy of the corresponding Ising hamiltonian
should be.

Given the high energy of the initial outgoing quark-antiquark
pair, the final jets tend to be highly collimated. One can use
the angle θ between particles as a starting point to build an
appropriate dissimilarity metric.

H “
1

2

N
ÿ

i ,j“1

´ cos
“

θpp⃗i , p⃗jq
‰

si sj “
1

2

N
ÿ

i ,j“1

´
p⃗i ¨ p⃗j
|p⃗i | ¨ |p⃗j |

si sj ,

where dij “ ´ cos
`

θij
˘

.
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Quantum adiabatic approach

When particles p⃗i and p⃗j belong to the same jet, we
measure θij !

π
2 ñ cos

`

θij
˘

« 1.

When two particles p⃗i and p⃗j belong to opposite jets), we
measure θij „ π ñ cospθijq « ´1.

Because our goal is to minimize H and not to maximize it,
we introduce a minus sign in the definition of H. As a
result, the minimization of H will favor the clustering of
particles closer in angular distance, that is, with smaller
θpp⃗i , p⃗jq relative to one another.

Even though H refers to simpler cases of dijet events, the
dissimilarity metric used is much more versatile and can be
generalized to more complex events. As such, opposed to the
Thrust concept discussed in Wei et al. Phys. Rev. D
101(2020)9, we are therefore safe while carrying this concept to
more elaborate, K -jet generalizations.
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Extension to K ą 2 jets

For K ą 2 the previous approach does not work.

We use binary variables xki and xkj to denote whether or
not two given particles p⃗i and p⃗j belong to the same jet jk .
If particle p⃗i P jet jk ñ xki “ 1. If not, it would have
xki “ 0. This type of formulation where we have one qubit
per particle per jet, we call One-Hot Encoding. It comes
at the cost of a more intensive qubit usage of the order of
OpKNq.

First term of our K -jet objective function:

H 1
K “

1

2

K
ÿ

k“1

N
ÿ

i ,j“1

´ cos
“

θpp⃗i , p⃗jq
‰

xki x
k
j .
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Extension to K ą 2 jets

For K ą 2 the previous approach does not work.

Now the lowest energy possible for a given configuration is
zero! We know that the minimization process of the
objective function favors the scenario in which all particles
are assigned to zero jets, such that we have xki “ 0 either
for a given particle p⃗i and all jets jk with k P t1, . . . ,Ku,
or for a given jet jk and all particles p⃗i with i P t1, . . . ,Nu.

W must not allow for any given particle to be assigned to
more than one jet!
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Extension to K ą 2 jets

Both of these issues can be solved by adding a constraining
term. Again, one needs to guarantee that for each particle p⃗i ,
there is one and only one xki “ 1 for some jet jk , with the rest

of xk
1‰k

i “ 0. Introduce

ϕi “

˜

1´
K
ÿ

k“1

xki

¸2

, (2)

and add it with a tunable parameter λ in order to obtain the
complete hamiltonian:

HK :“ H 1
K ` λ

N
ÿ

i“1

ϕi “
1

2

K
ÿ

k“1

N
ÿ

i ,j“1

´ cos
“

θpp⃗i , p⃗jq
‰

xki x
k
j

` λ
N
ÿ

i“1

˜

1´
K
ÿ

k“1

xki

¸2

.
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Extension to K ą 2 jets

If a particle is assigned to more than one jet, the
constraining term grows with each additional jet the
particle is assigned to. Consequently H 1

K will never
energetically favor this possibility, since it will always result
in an increase of its energy.

In the remaining case in which a given number of particles
are assigned to zero jets, the corresponding first terms of
the hamiltonian will be set to zero and reduce the value of
HK , thus being energetically favored.

The goal to be achieved with the addition of the
constraint, is simply to offset the largest possible
”incorrect”energy reduction in H 1

K . When a particle p⃗i is
assigned to zero jets, it can, in a worst case scenario basis,
result in N ´ K pairwise dissimilarity metrics set to zero.

55 / 81



Introduction

The classical
and quantum
representati-
ons

A first glance
at QC

Object
reconstruction

Tracking

Jets

Quantum
algorithms:
adiabatic
approach

Quantum
algorithms:
digital
approach

Extension to K ą 2 jets

We are now in conditions to conclude that the approximate
order of magnitude for λ should be

λ „ pN ´ K q ¨max
´

´ cos
“

θpp⃗i , p⃗jq
‰

¯

, @p⃗i , p⃗j . (3)

In practice λ cannot be made arbitrarily large due to the
current hardware state of the art inherent limitations mainly
related to the allowed range of the qubit couplings.
When compared to the K “ 2 jet event, the K -jet one-hot
encoding formulation is considerably harder to implement on
current quantum annealing hardware. Previous numerical
studies have shown that clustering problems making use of
multiple qubits to implement one-hot encoding are prone to
errors, thus widening the performance gap between dijet and
multijet events.
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Quantum annealing approach - Results

The PYTHIA Monte-Carlo event generator (version 8.3)
was used to as realistically as possible simulate real data.
Given the K “ 2 binary nature of the jet events being
studied, we generated e`e´ Ñ Z 0 Ñ qq̄, with all Z 0

decays switched off except those to quarks which have
been manually switched on.

We measure the algorithms’ performance against that of
the classical state-of-the-art kt clustering algorithm.

The kt clustering algorithm implemented and used through
the FastJet software package. By using the Jet Definition
jet def(kt algorithm, R), the kt clustering algorithm has
been chosen to run with an R parameter of R “ 0.8.
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Quantum annealing approach - Results

The output was then a list of the final jets’ total transverse
momenta ||⃗jTk

||, its pseudorapidity ηk and the corresponding
azimuthal angle ϕk . In addition, the list of the regrouped
final-state particles for each final jet was also produced, so that
it could be used to compare the classical benchmark’s results
with those of the developed quantum algorithm.
PYTHIA generated e`e´ events are not bound to K “ 2
despite being the most common. As such, given that the
developed algorithm is meant to be applied to binary clustering
dijet events where K “ 2, we have made the choice of always
considering only the two highest pT jets obtained by the kt
benchmark for comparison with the (always) binary results
obtained by the quantum annealing algorithms.
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Quantum annealing approach - Results

Efficiency metric to evaluate the obtained results for a given
event n:

ϵpnq “
# of particles grouped in the same way as kt
# of particles in the two highest-pT jets (kt)

.

We have, ϵQBC and ϵThr, which reflect the efficiencies of the
proposed quantum binary clustering algorithm and of the
Thrust-based quantum annealing of Wei et al.:

ϵQBC “
1

n

ÿ

n

ε
pnq

QBC , ϵThr “
1

n

ÿ

n

ε
pnq

Thr .
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Quantum annealing approach - Results
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Quantum digital approach: k-means algorithm
arXiv:2101.05618v1 [physics.data-an]

The classical k-means algorithm (S. Lloyd,
doi:10.1109/TIT.1982.1056489), applied to jet clustering for
the first time in 2006 and subsequently in 2012 (J. Thaler
jhep02(2012)093) and 2015 (I. Stewart jhep11(2015)072)
It receives as input a set of N, D-dimensional data points and
outputs K centroids, calculated through the mean of each
group of data points, thus defining K clusters.
To be assigned to any particular cluster, a data point needs to
be closer to that cluster’s centroid than to any other centroid
in the data set. In order to successfully converge to the final
set of centroids, the algorithm iteratively alternates between
assigning the data points to K clusters based on the current
centroids and choosing the centroids based on the current
assignment of the data points to clusters.
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k-means algorithm - Swap test routine

The algorithm presents a scaling complexity of OpKNDq, which
corresponds to the dominating step where the KN distances
between all the N data points and the K centroids are
calculated.
In order to compute the distances on a quantum circuit, we use
the SwapTest quantum sub-routine:

|0y H ‚ H

|ψy ˆ

|ϕy ˆ
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k-means algorithm - Swap test routine

Measure the overlap between two quantum states |ψy and |ϕy,
xψ|ϕy, based on the measurement probability of the control
qubit being in state |0y, Pp|0yq “ 1

2 `
1
2 | xψ|ϕy |

2:
1 State Preparation: Prepare two quantum states,

particle’s momentum vector p⃗i and a given jet cluster’s
centroid µk

|ψy “
1
?
2

`

|0, p⃗iy ` |1, µky
˘

,

|ϕy “
1
?
Z

`

||p⃗i || |0y ´ ||µk || |1y
˘

,

2 Find Overlap: Compute overlap | xψ|ϕy |2 through the
SwapTest sub-routine.

3 Compute Squared Euclidean Distance: Get the desired
squared Euclidean distance through the following equation,

||p⃗i ´ µk ||
2 “ 2Z | xψ|ϕy |2,
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k-means algorithm - Silhouette index

The number K of jets produced is not known a priori.
Nevertheless, one does know the expected range of K values as
a function of the center-of-mass energy

?
s and which particles

are being collided. To avoid any bias in the present algorithm
the number of jets K is chosen after a range sweep is
performed for a reasonably expected range of values of K .
We ran the algorithm a small number of times over the
expected range of K , so that the most adequate number of jets
can be inferred. We chose the value of K which produces the
highest quality clustering. We chose the Silhouette Index (P.
Rousseeuw, doi: 10.1016/0377-0427(87)90125-7) as a figure of
merit for clustering quality.
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k-means algorithm - Silhouette index

A quick complexity analysis yields a computational cost is of
the order of OpN2Dq, thus surpassing that of the algorithm
itself. For this reason, a simplified Silhouette figure of merit is
used, composed of the similarity measure app⃗i q, dissimilarity
measure bpp⃗i q, and Silhouette index spp⃗i q for each of the
clustered particles:

app⃗i q “ dpp⃗i , µi q ,

bpp⃗i q “ min
Ck‰Ci

dpp⃗i , µkq ,

spp⃗i q “

$

&

%

bpp⃗i q´app⃗i q

max
␣

app⃗i q,bpp⃗i q
( , if |Ci | ą 1 ,

0, if |Ci | “ 1 .

where Ci represents the jet cluster to which particle p⃗i belongs.
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k-means algorithm - Silhouette index

This way we have managed to reduce its computational cost to
O
`

NpK ´ 1q
˘

, which scales slower than the overall algorithm.
The overall clustering’s Silhouette is then obtained by
computing the mean of all N particles’ Silhouette values:

SK “
1

N

ÿ

i

spp⃗i q .

Only the information about final-state particles has been used
as input for the algorithm, in order to follow the same
procedure as for real data.
Any information prior to the final-state particles is disregarded,
as it is the case in any jet reconstruction using real data. The
observables used in the clustering process are the 3-momentum
vectors of the particles.
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k-means algorithm - Silhouette index

The dimensionality of the problem is thus constant with
D “ 3. Since D is constant, so is logD and this factor
drops out in the calculation of the algorithmic complexity.
The computational cost of the algorithm is thus simply
OpKNq.
Despite the possible naive OpN2q or even OpN3q

implementations, the classical kt can be cleverly
implemented in OpN logNq by exploiting some of its
geometrical and minimum-finding aspects. The new
proposed method becomes of interest only in the regime
where the number of reconstructed jets K ď logN.
It is important to notice that the D “ 3 dimensionality
affects not only the scaling of the proposed quantum
k-means algorithm, but also its classical counterpart.
Dropping the D factor, we obtain a complexity of OpKNq
for the classical k-means algorithm.
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k-means algorithm - Silhouette index

Since this is equivalent to that of its quantum analog, it
can be said that the use of this quantum algorithm for real
day-to-day jet clustering analysis becomes only relevant if
one is able to exploit the advantage of logD versus D
relative to the classical version. Use of the dimensionality
D may be possible considering synergies with other stages
of the jet clustering process (i.e. pile-up).

When measuring the algorithm’s jet clustering efficiency,
the ideal would be to compare it to the true jet regrouping
for any given generated event, giving us information on
the parenthood of each final-state particle and enabling us
to know which particles should be clustered together.
Unfortunately such Monte-Carlo truth is not available
by design.
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k-means algorithm - Silhouette index

Consequently, as mentioned above, we have chosen to
measure the algorithm’s performance against that of the
classical kt algorithm. For a given clustering output, where
the N final-state particles have been sorted into K jets, we
compare both algorithm’s clustering results on a
particle-by-particle basis according to the following
efficiency metric, ϵ:

ϵ “
# of particles grouped in the same way as kt
# of particles in meaningful jets found by kt

.

To identify the physically meaningful jets out of all the
jets found by the kt algorithm, we apply a minimum
transverse momentum pT jet cutoff, such that any given
jet with transverse momentum lower than the set cutoff
pT is discarded.
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k-means algorithm - Results

We have again used PYTHIA (version 8.3) to generate the
events on which the clustering should be performed (see
Appendix for more details on event generation). To study the
events’ scaling of K versus logN, we have generated both
e`e´ Ñ Z 0 Ñ qq̄ collision events at a center-of-mass energy
of
?
s “ mZ “ 91.1876˘ 0.0021 GeV {c2, (PDG value) as well

as pp collision events at center-of-mass energies of
?
s “ 7

TeV and
?
s “ 14 TeV . We have also explored pp collision

events involving t-quarks given its high jet multiplicity. As such
we have performed clustering on 1000 generated events of each
kind, storing both the number of found meaningful jets K , as
well as the corresponding event’s logarithm of the number of
final-state particles, logN.
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Plots of K vs logN for four different jet pT cutoff scenarios in
e`e´ collision generated events (four left plots), and two
different center-of-mass energies in pp collision generated
events (four right plots). Each red point represents a generated
event, where K jets have been found for logN particles.
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We ran the algorithm on the same 1000 events, checking its
clustering efficiency and its jet finding distribution, comparing
it with the kt algorithm.

For a jet pT ą 8 GeV in the overwhelming majority of the
clustered events, the quantum k-means algorithm found the
same jet configurations as the kt benchmark, with a decreasing
fraction of events for lower clustering efficiencies. The overall
jet finding efficiency with respect to the kt algorithm is
ϵ “ 93.3%. 72 / 81
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Moreover, it can be seen from the right plot that the number
of jets found by the kt algorithm is in the range from 0 to 3
while the proposed quantum k-means algorithm ranges
between 2 and 5. This is expected given that the high
transverse momentum jet cutoff of pT “ 8 GeV has been
applied only to the kt algorithm, thus resulting in a lower
number of overall found jets .
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To better understand the relation between the two algorithms,
the applied jet pT cutoff was lowered to pT “ 1 GeV , with the
purpose of artificially imposing a near zero barrier to the
number of meaningful jets found by the kt algorithm. As
before, a very high efficiency of ϵ “ 90.2% has been obtained:
even for a significantly larger number of jets (see right plot)
found by kt , the clustering efficiency has remained similar.
Regarding the distribution of the number of jets found, we can
now see from both the right hand histogram and the heatmap
plot, that there is a strong correlation between the number of
jets found by both algorithms. 74 / 81
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