Classification of Lung Cancer nodules from CT scans using Neural Networks

09.01.2024, Coimbra

Munteanu Vadim

Adrian Walczak

O1 Dataset

Seven academic centers and eight medical imaging companies collaborated to create this data

15

Image source

Sagittal plane

Coronal plane

Transverse plane

The Lung Image Database Consortium image collection (LIDC-IDRI) consists of diagnostic and lung cancer screening thoracic computed tomography (CT) scans with marked-up annotated lesions

For more info, click here

Objective

The objective is to use a dataset with CT images and develop a learning model to classify lung nodules as malignant or benign

And to let you visualize it better ...

Initial approach

Creating some kind of "probability" to have cancer . Threshold for malignancy took 1.5.

 $l = \sigma \left(n_n \left(\frac{< score}{thrsh} - 1 \right) \right)$

Problems with this approach:

- 1. Few data points: 1018 (1 slice per patient)
- 2. Too big images to work on our local machines.

 5
 6

 Pad images until Desired shape
 Normalize pixel values

Mean nodule

Each nodule has few annotations. Single data point in our dataset is "mean" annotation which corresponds to a nodule. Associated label is mean malignancy

This approach solves the above mentioned problems:

- 1. We downgrade the images from 512x512 to 64x64
- Considering that each patient has >=1 nodules => More data points!

Image source

End form of dataset

Moderately Unlikely

Moderately Suspicious

Highly Unlikely

5

Indeterminate

Moderately Suspicious

LIDC-IDRI-0703-2

LIDC-IDRI-0704-2

LIDC-IDRI-0705-3

LIDC-IDRI-0706-1

LIDC-IDRI-0707-1

malignancy map = {

- 1: 'Highly Unlikely',
- 2: 'Moderately Unlikely',
- 3: 'Indeterminate',
- 4: 'Moderately Suspicious',
- 5: 'Highly Suspicious'

1

~2625 images

LIDC-IDRI-0705-1

LIDC-IDRI-0704-1

- Learning rates = [0.1, 0.01, 0.001, 0.0001, 0.00001]
- BATCH_SIZE=64
- optimizer=Adam

Conv + Max-Pool Conv + Max-Pool Fully conected

Check the great explanation of how cnn works below:

https://www.youtube.com/watch?v=JB8T_zN7ZC0&t=3036s&ab_channel=BrandonRohrer

What we tried

First result with multi-class classification

Test Accuracy: 56.11%

Why?

- Dataset specification: The labels in the dataset are not perfect. They were created by a group of radiologists, and their assessments may vary slightly
- 2. Small # of datapoints
- Imbalanced classes: -->
 Solution for 2 and 3: oversampling minority labels

Data augmentation

Synthetic data generated by rotations

Synthetic data generated by flips

>10% improvement!

<- Results of Multi-class classification (binary classification next slide)

Binary approach

What if malignancy == 3?

The label equal to 3 indicates that the radiologists are uncertain whether the nodule indicates malignancy

Binary classification where 3 == malignancy == label 1

Resnet18

Vadim-nn

```
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 10, kernel_size=7, stride=1, padding=0),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0),
            nn.ReLU(),
            nn.Conv2d(10, 20, kernel_size=3, stride=1, padding=0),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
            nn.ReLU(),
            nn.Conv2d(20, 40, kernel_size=3, stride=1, padding=0),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
            nn.ReLU(),
        self.classifier = nn.Sequential(
            nn.Flatten(),
            nn.Linear(2560, 1280),
            nn.ReLU(),
            nn.Linear(1280, 1280),
            nn.ReLU(),
            nn.Linear(1280, 1280),
            nn.ReLU(),
            nn.Linear(1280, 160),
            nn.ReLU(),
            nn.Linear(160, 5)
```

Accuracy for Different Learning Rates

Summary and areas to explore

Future objectives

- Include volumetric information
- Use domain knowledge to select number of features
- Optimize hyperparameters using Ax₁
- with entire CT images (image segmentation) * a whole new project

Future objectives

 Using images with noise (bones arround e.g.)

> Instead of using nodules after applying a Boolean mask, as we did, it's worth trying to train the model with original nodules — potentially new patterns to learn

Future objectives

 Generating synthetic data using more advanced techniques
 E.g.: GAN(Generative Adversarial Networks)

Security and Privacy - Course Unit - University of Coimbra (uc.pt)

Thank you for attention!

You want to explore more? Check the code below: https://github.com/VadimBim/DeepL-LIDC

References:

-Dataset: Data from The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans (LIDC-IDRI) - The Cancer Imaging Archive (TCIA) Public Access - Cancer Imaging Archive Wiki

-Ax: https://ax.dev/tutorials/tune_cnn_service.htm - picture with binary and multi-class classification: <u>Getting started with</u> <u>Classification - GeeksforGeeks</u>