CLASSIFICATION OF PULSES IN THE LUX-ZEPLIN DARK MATTER DETECTOR

Elisa Ghetti

Kai Jenkins

LUX-ZEPLIN DETECTOR

Direct detection of dark matter based on liquid xenon scintillator

The interaction of an incident particle produces two signals:

- **S1:** scintillation light
- **S2**: electroluminescence light

Machine learning algorithms can be used to discriminate between them.

Goal: reach >99% overall classification accuracy

Classifier Input - 20 features (RQs):

- Pulse area (**pA**)
- Pulse amplitude (**pH**)
- Pulse length (pL, pL90 length at 90% area)
- Prompt fraction (**pF**) fraction of area at start of pulse: 50, 100, 200, 500, 1k, 2k and 5k ns window
- Top-bottom asymmetry (**TBA**)
- Area fraction time (aft) time when pulse reaches X% of total area: 5%, 25%, 50%, 75%, 95%
- Peak Time (**pHT**) Time of maximum
- RMS Width (**pRMSW**)

pulse

• (**coincidence**) Number of channels that had non-zero contribution to

Classifier Output - 4 classes:

[0] Other **[1]** S1 (scintillation) [2] S2 (electroluminescence)[3] SE (single electron)

FEATURE RESCALING

Data has to be in similar scale to avoid domination of features with larger values

FEATURE RESCALING

Data has to be in similar scale to avoid domination of features with larger values.

pA → log(pA) pH → log (pH) pL90→log(pL90)

FEATURE RESCALING

Data has to be in similar scale to avoid domination of features with larger values.

$$pA \rightarrow log(pA)$$

 $pH \rightarrow log (pH)$
 $pL90 \rightarrow log(pL90)$

NORMALISATION

StandardScaler normalisation:

- Mean = 0
- Standard deviation = 1

CORRELATION MATRICES

Analysis of the **correlation** between features

CORRELATION MATRICES

Analysis of the **correlation** between features

Highly correlated data can be rejected (adds no new information):

- log (pH)
- aft25, aft50, aft75, aft95
- pHT

• coincidence

PREPROCESSING OF THE LABELS DATASET

5 PREPROCESSING - SUPERVISED LEARNING - UNSUPERVISED LEARNING - FINAL MODEL - RESULTS

Labels S2 and SE can be combined into one S2-like label (both produced by electrons)

Note: will be applying balancing in all our models to adjusting for S2 frequency

PREPROCESSING OF THE LABELS DATASET

5 PREPROCESSING - SUPERVISED LEARNING - UNSUPERVISED LEARNING - FINAL MODEL - RESULTS

DENSITY PLOTS

 Looked at density plots between different features to visualise their relationships

 Can already see some groups in this plot

DENSITY PLOTS (Individual classes)

DecisionTreeClassifier MODEL

Recursive partitioning of the data based on the minimization of an impurity function

→ GINI impurity (likelihood of new data being misclassified if given a random class label.)

DecisionTreeClassifier MODEL

PARAMETERS:

- random_state: set to 0 for reproducibility
- max_leaf_nodesmax_depth

NOTE: all hyperparameters in this project where optimized with OPTUNA

DecisionTreeClassifier MODEL

The model's performance can be tested by calculating the **score**:

→ Test set score: 98.80%

A simple tree model is very simple yet powerful for a classification problem like this. **CONFUSION MATRIX**

RandomForest MODEL

 Ensemble of *DecisionTrees* where output is selected by **majority vote**

• Bootstrapping:

- → Reduces bias
- → More resistant to **overfitting**

log(pA)

• Unsupervised learning

- **Clustering analysis**: data is assumed to be distributed in a finite number of clusters
 - Linear superposition of K
 gaussian distributions

13 PREPROCESSING - SUPERVISED LEARNING - UNSUPERVISED LEARNING - FINAL MODEL - RESULTS

FEATURE IMPORTANCE

Relative importance of each feature:

how much the tree nodes that use that feature reduce impurity on average

GMM is a **density based** algorithm: a large number of components is necessary to fit less dense regions of the data

 K has to be much larger than the number of classes

GMM is a **density based** algorithm: a large number of components is necessary to fit less dense regions of the data

 K has to be much larger than the number of classes

Fit with **K=15** gaussians

Each gaussian component is associated to its majority class

New labels dataset can be used to train a more accurate Forest model

18 PREPROCESSING - SUPERVISED LEARNING - UNSUPERVISED LEARNING - FINAL MODEL - RESULTS

CONCLUSIONS															
	DECISION TREE					RANDOM FOREST					RANDOM FOREST WITH GMM DATA				
	Score: 98.80 %					Score: 99.13 %					Score: 99.40 %				
		0	1	2			0	1	2			0	1	2	
CLASS LABEL	0	89.9%	7.49%	0.002%	CLASS LABEL	 0 88.8%	9.38%	0%	BEL	0	93.2%	5.08%	0.022%		
	1	9.7%	87.2%	0.03%		1	9.99%	90.6%	0.02%	CLASS LAI	1	5.47%	94.9%	0%	
	2	0.2%	5.4%	99.97%		2	1.23%	0%	99.98%		2	1.13%	0%	99.98%	

* percentage of actual class label over total predictions of one class label

FUTURE DEVELOPMENTS

PERMUTATION IMPORTANCE

Randomly permuting variables in a tree and comparing its accuracy with the one of the original tree

→ accounts for highly correlated features

INCREASING K

Better fit of less dense regions and decrease in relevance of singularities

NEURAL NETWORK (TriNeT)

> Ensemble of Neural Networks which focus on separating one feature from the others

THANK YOU FOR YOUR ATTENTION

BACKUP

BACKUP

PULSES IN LZ

OTHER

S1

S2

PERMUTATION IMPORTANCE

Randomly permuting variables in a tree reduces its efficiency

→ Comparing its accuracy with the one of the original tree you can get the variable's importance

Permutation importance accounts for **highly correlated** features

TriNet CLASSIFIER

Ensemble of Neural Networks trained ad **One-VS-All**:

- → Each NN only learns one designated class, the rest of the pulses are labelled as "not of that class"
- Trained using pre-existing labels dataset

GMM WITH K=20

GMM with 15 or 20 doesn't change much, as the number of singularities increases: to see improvement we would need a much larger K, which requires too much computational power