Hands-on: QCD Jets

Developed by:

Liliana Apolinário, Catarina Espírito-Santo, Dario Vaccaro, Tiago Vale

.

Hands on: QCD Jets

What is this hands-on about:

Better understanding and visualisation of the Standard \bigstar model sector:

Quantum Chromodynamics (QCD)

What I will do:

Simple analytic exercises (first part) and a bit of coding (second part) +

Requirements: C/C++ and ROOT installed or Python interfaced with ROOT +

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

SONS

Questions to be answered

20 15

φ

What exactly is a jet?

Simple visualisation and analytic exercise to build a picture of a jet \bigstar

How can we reconstruct a jet?

Attempt to reconstruct and visualize a jet

What can we do with jets? +

Classification problem through multivariate algorithms (e.g: NN): Quark vs + Gluon-initiated jets

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

anti-k,, R=1 p, [GeV] 10

Hands-On: QCD Jets

Preparing for Hands-On

- Have ROOT installed: $\mathbf{+}$
 - See https://lip.pt/~liliana/HandsOn_QCDJets_Guide.pdf \bigstar
- For Part 2 and 3:
 - Download: <u>https://lip.pt/~liliana/HandsOn_QCDJets_Code.tar.gz</u> +

What is a jet?

14.0°

.

Let's follow particles during some time... What is likely to happen?

+

 \bigstar

Exercise

Considering two subsequent splittings, find the two possible diagrams for a quark?

Let's follow particles during some time... What is likely to happen? +

Exercise

 \bigstar

Considering two subsequent splittings, find the four possible diagrams for a gluon?

What is likely to be the energy distribution of the particles at the end?

Let's look to the parton splitting functions: \bigstar

+

✦ fraction of energy (z):

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

The probability for a given parton (quark or gluon) to emit another parton (quark or gluon) with a

quark –> quark + gluon

Fraction of energy (z)

What is likely to be the energy distribution of the particles at the end?

Let's look to the parton splitting functions: \bigstar

+

✦ fraction of energy (z):

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

The probability for a given parton (quark or gluon) to emit another parton (quark or gluon) with a

quark –> quark + gluon

Fraction of energy (z)

What is likely to be the energy distribution of the particles at the end?

Let's look to the parton splitting functions: \bigstar

+

✦ fraction of energy (z):

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

The probability for a given parton (quark or gluon) to emit another parton (quark or gluon) with a

gluon –> gluon + gluon

What is likely to be the energy distribution of the particles at the end?

Let's look to the parton splitting functions: \bigstar

+

✦ fraction of energy (z):

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

The probability for a given parton (quark or gluon) to emit another parton (quark or gluon) with a

gluon –> gluon + gluon

What is likely to be the energy distribution of the particles at the end?

Let's look to the parton splitting functions: \bigstar

+

 \bigstar fraction of energy (z):

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

The probability for a given parton (quark or gluon) to emit another parton (quark or gluon) with a

gluon -> quark + anti-quark

Fraction of energy (z)

What is likely to be the energy distribution of the particles at the end?

Let's look to the parton splitting functions: \bigstar

+

 \bigstar fraction of energy (z):

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

The probability for a given parton (quark or gluon) to emit another parton (quark or gluon) with a

gluon -> quark + anti-quark

Fraction of energy (z)

What is likely to be the energy distribution of the particles at the end?

Let's look to the parton splitting functions: \bigstar

+

✦ fraction of energy (z):

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

The probability for a given parton (quark or gluon) to emit another parton (quark or gluon) with a

Exercise Find the energy of the final particles for these 6 configurations? Ε Ε 0000000

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

Hands-On: QCD Jets

+

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

Hands-On: QCD Jets

What can you conclude about the typical energy distribution?

+

Source of collimated energy always present!

What can you conclude about the typical energy distribution?

+

There are channels that produce a more energy balance in the final list of particles

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

Hands-On: QCD Jets

What can you conclude about the typical energy distribution?

Additional tip: gluons radiate more than quarks (~2x more!)

+

 P_{gg} 00000000

What can you conclude about the typical energy distribution?

Additional tip: gluons radiate more than quarks (~2x more!)

+

We measure only the final particles... +

From energy and "distance" correlations, we can cluster the particles likely to come from the same \bigstar original quark or gluon:

We measure only the final particles... +

From energy and "distance" correlations, we can cluster the particles likely to come from the same \bigstar original quark or gluon:

We measure only the final particles... +

From energy and "distance" correlations, we can cluster the particles likely to come from the same \bigstar original quark or gluon:

We measure only the final particles... +

From energy and "distance" correlations, we can cluster the particles likely to come from the same \bigstar original quark or gluon:

We measure only the final particles... +

From energy and "distance" correlations, we can cluster the particles likely to come from the same \bigstar original quark or gluon:

All these are suitable jets! We just need to specify: - The size of the jet (R) - The algorithm to cluster particles

Special thanks to Sérgio Carrôlo and Íris Silva:

Build the first spatial jet visualizer!! \bigstar

• Quark initiated jet — low multiplicity

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

S. Carrôlo, I. Silva, "LIP Summer Internships 2010"

• Gluon initiated jet — high multiplicity

What is a jet $\sqrt{}$

10 14 14 14 14 14 14 14

BALL!

How can we measure one?

Recap: what do we detect?

What is the information that we get from the detector?

"Our" variables: (3D space)

+

p_T : projection of momentum in the transverse ($\eta \sim 0$) direction

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

"Detector" variables: (2D plane)

Azimuthal angle: \$ Pseudo-rapidity: η

Now that we know what is a jet, how can we reconstruct it? \bullet

Simulated Proton-Proton event in detector coordinates: \bigstar

Now that we know what is a jet, how can we reconstruct it?

+

Simulated Proton-Proton event in detector coordinates: \bigstar

Now that we know what is a jet, how can we reconstruct it?

+

 \bigstar

Simulated Proton-Proton event in detector coordinates:

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

Identified 2 to 3 likely jets "by eye"

Now that we know what is a jet, how can we reconstruct it?

+

Simulated Proton-Proton event in detector coordinates: \bigstar

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

23

Identified 2 to 3 likely jets "by eye"

3-jet like events can come from large angle splittings that share (approximately) the same energy fraction:

• Symmetric splitting function — two main branches

S. Carrôlo, I. Silva, "LIP Summer Internships 2010"

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

+

• Asymmetric splitting function one main branch

Now that we know what is a jet, how can we reconstruct it?

Simulated Proton-Proton event in detector coordinates: \bigstar

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

+

But the details are not that simple...

Given a fixed size R, where are exactly my 2 jets in this event?

Now that we know what is a jet, how can we reconstruct it?

Simulated Proton-Proton event in detector coordinates:

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

+

 \bigstar

But the details are not that simple...

Given a fixed size R, where are exactly my 2 jets in this event?

Cluster the most energetic particles?

Now that we know what is a jet, how can we reconstruct it?

Simulated Proton-Proton event in detector coordinates:

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

+

 \bigstar

But the details are not that simple...

Given a fixed size R, where are exactly my 2 jets in this event?

Cluster the largest amount of energy/particles?

Now that we know what is a jet, how can we reconstruct it?

Simulated Proton-Proton event in detector coordinates:

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

+

 \bigstar

But the details are not that simple...

Given a fixed size R, where are exactly my 2 jets in this event?

Larger size jets will have the same problem

Now that we know what is a jet, how can we reconstruct it?

Simulated Proton-Proton event in detector coordinates: \bigstar

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

+

But the details are not that simple...

Given a fixed size R, where are exactly my 2 jets in this event?

Larger size jets will have the same problem

Now that we know what is a jet, how can we reconstruct it?

+

Simulated Proton-Proton event in detector coordinates: \bigstar

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

But the details are not that simple...

Seems like a 3-jet event

Are these particles still part of this jet?

Exercise Try to devise a jet clustering algorithm to find the 2 jets with R = 0.4 with the largest transverse momentum in the following simulation sets:

Open Part2 of the HandsOn_QCDJets_Code

Some examples:

+

Solution Try to devise a jet clustering algorithm to find the 2 jets with R = 0.4 with the largest transverse momentum in the following simulation sets:

A possible solution: First event

Solution Try to devise a jet clustering algorithm to find the 2 jets with R = 0.4 with the largest transverse momentum in the following simulation sets:

A possible solution: Second event

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

Hands-On: QCD Jets

First jet clustering algorithms were also based on a seed particle

Abandoned as likely to be biased... \bigstar

 $\mathbf{+}$

Nowadays only used sequential recombination algorithms:

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2},$$

$$d_{iB} = p_{ti}^{2p},$$

Family of jet clustering algorithms:

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2,$$

p = 1: kt p = 0: Cambridge/Aachen p = -1: anti-kt

Sequential Recombination algorithms:

For the same event, they will give different jets: \bigstar

Let's compare its result agains ours:

+

From the previous solution: First event \bigstar

Let's compare its result agains ours:

+

From the previous solution: First event \bigstar

Let's compare its result agains ours:

+

From the previous solution: First event \bigstar

Let's compare its result agains ours:

+

From the previous solution: First event \bigstar

Anti-kt Algorithm

Let's compare its result agains ours:

+

From the previous solution: First event \bigstar

Small diferences among the three...

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

Anti-kt Algorithm 12 10 φ (rad) 2.5 0.5 1.5 2 **kt Algorithm** . . . **1**2 10 φ (rad) 9F., -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 0

Hands-On: QCD Jets

Let's compare its result agains ours:

+

From the previous solution: Second event \bigstar

Let's compare its result agains ours:

+

From the previous solution: Second event \bigstar

Let's compare its result agains ours:

+

From the previous solution: Second event \bigstar

Let's compare its result agains ours:

+

From the previous solution: Second event \bigstar

Our simple algorithm usually fails for the sub-leading jet...

Let's compare its result agains ours:

+

From the previous solution: Second event \bigstar

Our simple algorithm usually fails for the sub-leading jet...

While geometric considerations usually work, QCDinspired jets are better at identifying jets that fragment more!

What is a jet $\sqrt{}$

How can we measure one $\sqrt{}$

What can we do with jets?

Relating Experiment to QCD

Reconstructed jets are proxies for the QCD parton shower:

+

Relating Experiment to QCD

Reconstructed jets are proxies for the QCD parton shower:

+

Relating Experiment to QCD

Reconstructed jets are proxies for the QCD parton shower:

+

Can we identify if a jet was initiated by a quark or a gluon?

- - Code: Open Part3 from HandsOn_QCDJets_Code
 - Sample: sample_a.root
 - jetPhi), Jet multiplicity(ntowers), energy of the highest momentum particle (towerE[0]),
 - +

Try to Identify the best observable to discriminate between quark-initiated jets from gluon-initiated jets:

Extract: tar -xzvf HandsOn_QCDJets_Code.tar.gz

Observables: Jet transverse momentum (jetPt), Jet pseudo-rapidity (η , jetEta), Jet azimuthal angle (ϕ ,

Methods available: Boosted Decision Trees (BDT), Fisher and Multivariate Algorithm (MVA)

Boosted Decision Trees (BDT)

- Phase space is split into regions that are classified as signal or background.
- Each split uses the variable that gives the best separation between signal and background.
- The division is stopped once a certain node has reached a \bigstar minimum number of events, or a given signal purity.
- Decision trees are insensitive to the inclusion of poorly + discriminating input variables.

Fisher's linear discriminant

Linear Discriminant Analysis:

+

 \bigstar

Statistical Method to find a linear combination of features that separates two or more classes of objects or events:

good projection: separates classes well

The resulting combination may be used as a linear classifier (in our case, to provide a cut to distinguish) + quarks from gluon-initiated jets)

Multilayer Perceptron (MLP)

Neural Network: Non-linear Discriminant analysis (identical to Fisher, but more flexible)

Fisher (linear discriminant)

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

+

MVA (non-linear discriminant)

Multilayer Perceptron (MLP)

Neural Network: Non-linear Discriminant analysis (identical to Fisher, but more flexible)

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

+

- Code: TMVA_Training.C (to train), TMVA_Application.C (to apply to an unknown sample) and TMVA_compare.C (to compare training with simulation)
- Sample: sample_a.root
- Observables: Jet transverse momentum (jetPt), Jet pseudo-rapidity (η , jetEta), Jet azimuthal angle (ϕ , + jetPhi), Jet multiplicity(ntowers), energy of the highest momentum particle (towerE[0]),
 - Methods available: Boosted Decision Trees (BDT), Fisher and Multivariate Algorithm (MVA) +

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

Solution Try to Identify the best observable to discriminate between quark-initiated jets from gluon-initiated jets:

An attempt: Jet Multiplicity (ntowers) \bigstar

🛑 😑 🗧 TMVA Plotting Macros for Classification
(1a) Input variables (training sample)
(2a) Input variable correlations (scatter profiles)
(3) Input Variable Linear Correlation Coefficients
(4a) Classifier Output Distributions (test sample)
(4b) Classifier Output Distributions (test and training samples superimposed)
(4c) Classifier Probability Distributions (test sample)
(4d) Classifier Rarity Distributions (test sample)
(5a) Classifier Cut Efficiencies
(5b) Classifier Background Rejection vs Signal Efficiency (ROC curve)
(5b) Classifier 1/(Backgr. Efficiency) vs Signal Efficiency (ROC curve)
(6) Parallel Coordinates (requires ROOT-version >= 5.17)
(7) PDFs of Classifiers (requires "CreateMVAPdfs" option set)
(8) Likelihood Reference Distributiuons
(9a) Network Architecture (MLP)
(9b) Network Convergence Test (MLP)
(10) Decision Trees (BDT)
(11) Decision Tree Control Plots (BDT)
(12) Plot Foams (PDEFoam)
(13) General Boost Control Plots
(14) Quit

Solution Try to Identify the best observable to discriminate between quark-initiated jets from gluon-initiated jets:

An attempt: Jet Multiplicity (ntowers) \bigstar

🛑 😑 🌑 🛛 TMVA Plotting Macros for Classification
(1a) Input variables (training sample)
(2a) Input variable correlations (scatter profiles)
(3) Input Variable Linear Correlation Coefficients
(4a) Classifier Output Distributions (test sample)
(4b) Classifier Output Distributions (test and training samples superimposed)
(4c) Classifier Probability Distributions (test sample)
(4d) Classifier Rarity Distributions (test sample)
(5a) Classifier Cut Efficiencies
(5b) Classifier Background Rejection vs Signal Efficiency (ROC curve)
(5b) Classifier 1/(Backgr. Efficiency) vs Signal Efficiency (ROC curve)
(6) Parallel Coordinates (requires ROOT-version >= 5.17)
(7) PDFs of Classifiers (requires "CreateMVAPdfs" option set)
(8) Likelihood Reference Distributiuons
(9a) Network Architecture (MLP)
(9b) Network Convergence Test (MLP)
(10) Decision Trees (BDT)
(11) Decision Tree Control Plots (BDT)
(12) Plot Foams (PDEFoam)
(13) General Boost Control Plots
(14) Quit

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

Cut at "0" seems to provide a reasonable separation

Solution Try to Identify the best observable to discriminate between quark-initiated jets from gluon-initiated jets:

An attempt: Jet Multiplicity (ntowers) \bigstar

🛑 😑 🌕 TMVA Plotting Macros for Classification
(1a) Input variables (training sample)
(2a) Input variable correlations (scatter profiles)
(3) Input Variable Linear Correlation Coefficients
(4a) Classifier Output Distributions (test sample)
(4b) Classifier Output Distributions (test and training samples superimposed
(4c) Classifier Probability Distributions (test sample)
(4d) Classifier Rarity Distributions (test sample)
(5a) Classifier Cut Efficiencies
(5b) Classifier Background Rejection vs Signal Efficiency (ROC curve)
(5b) Classifier 1/(Backgr. Efficiency) vs Signal Efficiency (ROC curve)
(6) Parallel Coordinates (requires ROOT-version >= 5.17)
(7) PDFs of Classifiers (requires "CreateMVAPdfs" option set)
(8) Likelihood Reference Distributiuons
(9a) Network Architecture (MLP)
(9b) Network Convergence Test (MLP)
(10) Decision Trees (BDT)
(11) Decision Tree Control Plots (BDT)
(12) Plot Foams (PDEFoam)
(13) General Boost Control Plots
(14) Quit

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

But "signal purity" increases with higher cut

Solution Try to Identify the best observable to discriminate between quark-initiated jets from gluon-initiated jets:

An attempt: Jet Multiplicity (ntowers) \bigstar

Both methods provide the same Background/Signal efficiency

🛑 😑 🕘 TMVA Plotting Macros for Classification
(1a) Input variables (training sample)
(2a) Input variable correlations (scatter profiles)
(3) Input Variable Linear Correlation Coefficients
(4a) Classifier Output Distributions (test sample)
(4b) Classifier Output Distributions (test and training samples superimposed)
(4c) Classifier Probability Distributions (test sample)
(4d) Classifier Rarity Distributions (test sample)
(5a) Classifier Cut Efficiencies
(5b) Classifier Background Rejection vs Signal Efficiency (ROC curve)
(5b) Classifier 1/(Backgr. Efficiency) vs Signal Efficiency (ROC curve)
(6) Parallel Coordinates (requires ROOT-version >= 5.17)
(7) PDFs of Classifiers (requires "CreateMVAPdfs" option set)
(8) Likelihood Reference Distributiuons
(9a) Network Architecture (MLP)
(9b) Network Convergence Test (MLP)
(10) Decision Trees (BDT)
(11) Decision Tree Control Plots (BDT)
(12) Plot Foams (PDEFoam)
(13) General Boost Control Plots
(14) Quit

- Solution
 - An attempt: Jet Multiplicity (ntowers) \bigstar
 - Selection example: Fisher Algorithm with cut at "0.1" ✦
 - Sample a:
 - 88 981 quark-jets +
 - 121 483 gluon-jets +

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

- ution
 - An attempt: Jet Multiplicity (ntowers) \bigstar
 - Selection example: Fisher Algorithm with cut at "0.1" ✦
 - Sample a: +
 - 88 981 quark-jets +
 - 121 483 gluon-jets +

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

- ution
 - An attempt: Jet Multiplicity (ntowers) \bigstar
 - Selection example: Fisher Algorithm with cut at "0.1" \bigstar
 - Real values: Sample a: +
 - 88 981 quark-jets + 123 015 quark-jets
 - 87 449 gluon-jets 121 483 gluon-jets +

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

- solution
 - An attempt: Jet Multiplicity (ntowers) \bigstar
 - Selection example: Fisher Algorithm with cut at "0.1" ✦
 - Sample a: **+**
 - 88 981 quark-jets +
 - 121 483 gluon-jets +

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

Try to Identify the best observable to discriminate between quark-initiated jets from gluon-initiated jets:

- Solution
 - An attempt: Jet Multiplicity (ntowers) \bigstar
 - Selection example: Fisher Algorithm with cut at "0.1" ✦
 - Checking how does it compare to the training sample:

Try to Identify the best observable to discriminate between quark-initiated jets from gluon-initiated jets:

- Play with more than one observable and different methods: \bigstar
 - a: "identical" samples \bigstar

Developed by: L. Apolinário, C. Espírito-Santo, D. Vaccaro, T. Vale

Try to Identify the best observable to discriminate between quark-initiated jets from gluon-initiated jets:

Try to Identify the best observable to discriminate between quark-initiated jets from gluon-initiated jets:

- After finding the best combination of parameters use: \bigstar
 - TMVA_Training.C (to train), TMVA_Application.C (to apply to an unknown sample) and ✦ TMVA compare.C (to compare training with simulation)
 - In samples: +

cise

- a: "identical" samples +
- b: gluon dominated **+**
- c: quark dominated

Try to Identify the best observable to discriminate between quark-initiated jets from gluon-initiated jets:

- After finding the best combination of parameters use: \bigstar
 - TMVA_Training.C (to train), TMVA_Application.C (to apply to an unknown sample) and \bigstar TMVA_compare.C (to compare training with simulation)
 - In samples:

cise

- a: "identical" samples +
- b: gluon dominated **+**
- c: quark dominated

123 015 quark-jets vs 87 449 gluon-jets

4 697 quark-jets vs 87 449 gluon-jets

118 363 quark-jets vs 5 922 gluon-jets

