Search for CP violation in $H \rightarrow b\overline{b}\gamma$ decays at **ATLAS**

Carolina dos Santos Costa

Supervisor: Prof. Patricia Conde Muiño

Mestrado em Engenharia Física Tecnológica, Técnico, Universidade de Lisboa Laboratório de Instrumentação e Física Experimental de Partículas

Atlas Detector

Motivation

- Not all of the Higgs boson properties have been yet precisely understood.
- One way of exploring the Higgs sector is to study how the Higgs boson interacts with quarks.
- My master thesis will be focused on the study of the $Hb\bar{b}\gamma$ interaction.

Figura 1: Higgs decay to 2 quarks b and 1 photon.

• The goal is to understand of the LHC sensibility to detect anomalous $H
ightarrow bb\gamma$ interactions.

Choosing the Higgs boson production channel

Figura 2: Feynman diagrams for different Higgs production channels and consequent decays, with the corresponding cross-sections.

From left to right: via gluon fusion, via vector boson, Z and Higgs associated production. Cross-sections for $\sqrt{s} = 14 \, TeV$ and $m_{Higgs} = 125 \, GeV$

 $\sigma = 54.67 \ pb$

largest cross-section ♥ large background from multijet events

q Z/W^{\pm} Z/W^{\mp}

- Production via vector boson fusion (VBF) $\sigma = 4.278 \ pb$
 - 1 2^{nd} largest cross-section **I** requires triggering on light jets

• The larger the cross-section the more probable an event to occur.

W and Higgs associated production (WH)

 $\sigma = 1.514 \ pb$

Z and Higgs associated production (ZH)

 $\sigma = 0.986 \ pb$

- leptons in the final state c event selection using leptons and/or neutrinos
- $\mathbf{\nabla}$ smaller cross-sections

Results for the ggF production channel

Figura 3: Transverse momentum of the leading photon of each event, for SM and BSM simulated data sample.

Figura 4: Number of b-jets per event in the SM and BSM simulated data sample

Next Steps & Analysis

- After applying the selection criteria no events survived the complete event selection.
- This indicates that the ggF channel is **not** a good candidate for this study.
- For my thesis I will use the WH and ZH production channels.

Taula 1: Efficiency table (in percentage) for the six different samples, cumulatively for the selection criteria applied.

	Standard Model	Beyond Standard Model	Background			
	$ $ pp ->h ->bb γ	pp ->h ->bb γ	pp->bba	pp->bbj	pp->jja	pp->jjj
lead photon $p_{ au} > 80$	0,5E-05	0.864	11.7338	0.0048	12.5991	0.0086
#bjets > 2	0	0.021	1.9017	5.70E-04	2.15E-02	1.91E-05
$\Delta R_{b\gamma} < 1.5$	0	0.021	0.3369	2.69E-05	3.05E-03	1.54E-06
<i>S</i> < 0.02	0	0.004	0.3335	2.62E-05	2.79E-03	1.47E-06
$135 > M_{bar{b}\gamma} > 100$	0	0	5.26E-04	1.54E-07	1.11E-06	8.67E-09

- The next steps and analysis will be as follows:
- 1. Determine the relevant backgrounds for these channels
- 2. Simulation of collisions for:
 - SM signal $(H \rightarrow b \bar{b} \gamma)$
 - BSM signals
 - backgroung processes
- 3. Optimise the selection criteria used in order to:
 - exclude the background events
 - keep the signal processes
- 4. Understand how it affects the **sensitivity** of the experiment to phenomena beyond the SM.