

The Dark Linear Seesaw

A. Batra, H.B. Câmara, F.R. Joaquim

The problems: the Standard Model cannot explain:

ADITYA BATRA

PhD Student @ CFTP (2023-2027)

Centro de Física Teórica de Partículas (CFTP)

FCT PhD Grant: UI/BD/154391/2023 aditya.batra@tecnico.ulisboa.pt

PhD Programme: Neutrinos: a window to the Universe

Supervisors:

Filipe Joaquim (CFTP/IST) Rahul Srivastava (IISER Bhopal) José W. F. Valle (IFIC, València)

2022: MSc in Physics

MSc Thesis:

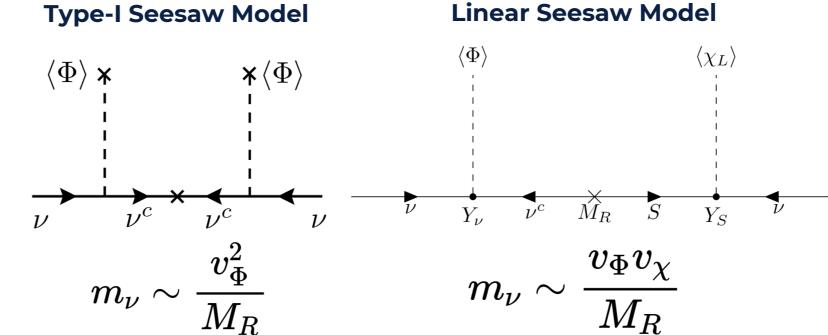
h to Υγ as a Novel Probe for New Physics

Supervisor:

Rahul Srivastava

MSc Thesis

other while they propagate.


masses.

Neutrino flavour oscillations

> Neutrinos can change from one type to the

> This is only possible if they have non-zero

Popular solutions

> The **Type-I Seesaw** is by far the simplest solution to the neutrino mass problem.

Observed Dark Matter abundance

> Cosmological evidence suggests that

Universe appears in the form of dark

26.8% of the total matter in the

matter.

- > A major drawback of this model is the large mass scale of the righthanded neutrinos, far away from the reach of current experiments.
- > The Linear Seesaw, despite being more complicated, is a

low-scale solution

that offers more testability prospects at ongoing experiments.

Highlighted Publications:

 Axion paradigm with color-mediated neutrino masses

A. Batra, H.B. Câmara, F.R. Joaquim, R. Srivastava, J.W.F. Valle

Accepted in Phys. Rev. Lett. e-Print: 2309.06473 [hep-ph]

 Phenomenology of the simplest linear seesaw mechanism

A. Batra, P. Bharadwaj, S. Mandal, R. Srivastava, J.W.F. Valle

Published in: JHEP 07 (2023) 221

 W-mass Anomaly in the Simplest Linear **Seesaw Mechanism**

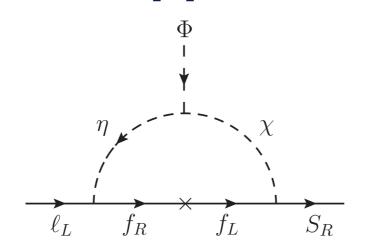
A. Batra, P. Bharadwaj, S. Mandal, R. Srivastava, J.W.F. Valle

Published in: Phys.Lett.B 834 (2022) 137408

 Heavy neutrino signatures from leptophilic Higgs portal in the linear seesaw

A. Batra, P. Bharadwaj, S. Mandal, R. Srivastava, J.W.F. Valle

e-Print: 2304.06080 [hep-ph]

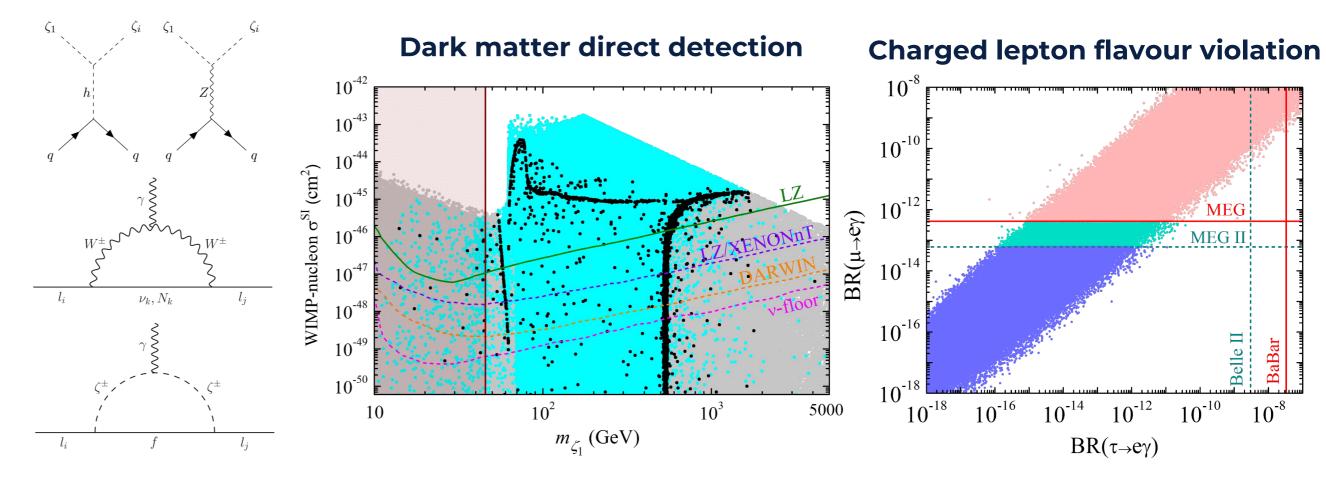

• h>Υγ Decay: Smoking Gun Signature of Wrong-Sign hbb Coupling

A. Batra, S. Mandal, R. Srivastava e-Print: 2209.01200 [hep-ph]

Full Publication List

Our approach:

The **lepton number symmetry** is violated by the scalar potential term:


$$V_{\text{soft}} = \kappa \left(\eta^{\dagger} \Phi \right) \chi + \text{H.c.} ,$$

	Fields	$\mathrm{SU}(2)_{\mathrm{L}}\otimes\mathrm{U}(1)_{\mathrm{Y}}$	$\mathrm{U}(1)_L$	\mathcal{Z}_2	
Fermions	L	(2 ,-1)	1	+	
	e_R	(1 ,2)	1	+	
	$ u_R$	(1 ,0)	1	+	
	S_R	(1 ,0)	-1	+	
	$f_{L,R}$	(1 ,0)	-1	_	
Scalars	Φ	(2 ,1)	0	+	
	η	(2 ,1)	-2	_	
	$ \chi$	(1 ,0)	0	_	

We propose a model where the low-scale linear seesaw neutrino mass generation mechanism is seeded by cosmologically stable dark matter particles accounting for both neutrino flavour oscillations and the observed dark matter abundance.

The results

We have performed a complete numerical study to test our framework

The scalar dark matter particles can interact with normal matter directly through the Higgs or Z boson. Furthermore, the new particles can mediate charged lepton flavour violating decays with sizable branching ratios. Therefore, our model can be probed through these processes at various current and upcoming experiments.

