Astroparticle Physics Messengers of the Universe

LIP/CFTP mini-school, Oeiras, February 5th 2024

Ruben Conceição

CNICO

The Particle Physics Standard Model

Extremely successful describing the interactions between elementary particles but

We know it's incomplete!

Dark Matter / Dark Energy Gravity vs Quantum Mechanics

Human-made Accelerators

 How to perform tests to our understanding of fundamental particle physics? Accelerate and collide particles
 Acc A Measurements in the LAB (controlled conditions)

 \Rightarrow LHC (Higgs) / HL-LHC / FCC-ee / FCC-hh (up to $\sqrt{s} = 100 \,\text{TeV}$; starting 2065)

Energy vs Intensity Frontier

What is the maximum energy we could aspire to reach?

What is our target energy? Are we exploring the optimal energy range?

Ask the Universe

Cosmic ray energy spectrum

How to build an accelerator with $E_b = 10^{20} \,\mathrm{eV?}$

Large Hadron Collider (LHC), 27 km circumference, superconducting magnets

How to build an accelerator with $E_b = 10^{20} \,\mathrm{eV?}$

Large Hadron Collider (LHC), 27 km circumference, superconducting magnets

Need accelerator of size of Mercury orbit to reach 10²⁰ eV with LHC technology

How to build an accelerator with $E_h = 10^{20} \,\mathrm{eV?}$

Large Hadron Collider (LHC), 27 km circumference, superconducting magnets

Need accelerator of size of Mercury orbit to reach 10²⁰ eV with LHC technology

Why do we care? The Planck scale

Gravity meets Quantum Mechanics

Schwarzschild radius ~ Compton wavelength

$$R_S \approx \lambda_C \to \frac{2G_N m_P}{c^2} \approx \frac{h}{mc}$$

$$m_P \approx \sqrt{\frac{\hbar c}{G_N}}$$
$$l_P \approx \frac{h}{m_P c} \approx \sqrt{\frac{\hbar G_N}{c^3}}$$
$$t_P \approx \frac{l_P}{c} \approx \sqrt{\frac{\hbar G_N}{c^5}}$$

 $m_P \sim 3.86 imes 10^{-8} \, {
m kg}$

 $\sim 2.16 imes 10^{19}\,{
m GeV/c^2}$

 $l_P \sim 1.6 \times 10^{-35} \,\mathrm{m}$ $t_P \sim 5.4 \times 10^{-44} \, {\rm s}$

m_P can be derived using dimensional analysis

LIV tests with UHE photons

$$E^2 - p^2 = m^2 + \eta^{(n)} \frac{p^{n+2}}{M_{\rm Pl}^{n+2}}$$

Lorentz invariance Violation (LIV) being probed at energies above the Planck scale

How do we measure Astroparticles? **Pierre Auger Observatory** UHECR: $E > 10^{18} \text{ eV} - \Phi \sim 1 \text{ km}^{-2} \text{ sec}^{-1}$

Pierre Auger Observatory

ruben@lip.pt

Pierre Auger Observatory

Built to detect and study the extremely rare UHECR

- ~ 1600 Surface detectors (SD)
- In a 1.5 km hexagonal grid
- 3000 km²
- 4 Fluorescence Detectors (FD)
- 6 x 4 + 3 Fluorescence Telescopes
- + low energy extensions

ruben@lip.pt

What's the size of the Observatory?

ruben@lip.pt

Really big!!

ruben@lip.pt

Pierre Auger Collaboration

Argentina Australia Belgium Brazil Colombia Czech Republic France Germany Italy Mexico Netherlands Poland Portugal Romania Slovenia Spain USA

International collaboration of 17 Countries and ~ 400 scientists

Pierre Auger Observatory

Surface Detectors (SD)

Hybrid Technique (FD + SD)

Hybrid technique (FD + SD)

Ultra High Energy Cosmic Rays

Ultra High Energy Cosmic Rays What have we learned so far?

Are UHECRs produced in our galaxy?

Are UHECRs produced in our galaxy?

Galaxy Plane

UHECR have an extra-galactic origin

Galaxy Plane

♦ UHECRs are accelerated:

180

- ♦ somewhere in our Universe
 - If from the photon and neutrino limits (next class)
- ♦ Outside the galaxy

-90

Galax

UHECR energy spectrum

Phys. Rev. Lett. 125 (2020) 121106

Composition fits to X_{max}

The primary **composition** goes from **light to heavier** as its energy increases

Measurement of the EAS muon content

- Muons are sensitive to the details of the hadronic interactions
 A sensitive to the details of the hadronic interactions
 A sensitive to the details of the hadronic interactions
 A sensitive to the details of the hadronic interactions
 A sensitive to the details of the hadronic interactions
 A sensitive to the details of the hadronic interactions
 A sensitive to the details of the hadronic interactions
 A sensitive to the details of the hadronic interactions
 A sensitive to the details
 that rules the shower development
- A Measurement performed using hybrid (inclined showers
 A Measurement performed using hybrid (inclined showers)
 A Measurement performed using hybrid (inclined showers)

Sensitive to the EAS muon number - R_{μ}

Phys.Rev.Lett. 126 (2021) 15, 152002

Sensitive to the EAS calorimetric energy -E - and X_{\max}

Inneumih'hr

The EAS muon puzzle @ Auger

Eur.Phys.J.C 80 (2020) 8, 751

Muon excess present both at lower and higher energies if one takes into account preferred X_{max} composition

Phys.Rev.Lett. 126 (2021) 15, 152002

Multi-hybrid shower events (The future of the Pierre Auger Observatory)

1016

1017

ruben@lip.pt

Energy [eV] 1018 1019 1020

Multi-messenger observations

Multi-wavelength Astronomy

Multi-messenger Astronomy

+ Gravitational Waves

Neutrino

Multi-messenger observation of a Binary Neutron Star Merger

Simultaneous observation of a Gravitational Wave + electromagnetic counter parts

Joint publication of LIGO, VIRGO, INTEGRAL, Fermi, IceCube, Pierre Auger ...

Merging Neutron Stars Exploding Massive Stars **Big Bang** Dying Low Mass Stars Exploding White Dwarfs Cosmic Ray Fission The merger of neutron stars is known as Kilonovae Kilonovae are candidates for production of half the chemical elements
 A
 Second Secon

heavier than iron in the Universe

Astroparticle Physics A unique opportunity to explore the extreme energy Universe

2019 - 2026 - 2040

1011

1012

10¹³

LIP @ Auger

First interaction

Phenomenology of Air Showers

New observables and measurements

 α_1 is the fraction of energy going into the hadronic sector in the first interaction Particle physics up to $\sqrt{s} \approx 400 \, \text{TeV}$

Raising the bar

New detectors and calibration measurements

Particularly important **Machine Learning Analysis**

LIP @ SWGO

Novel shower observables for gamma/hadron discrimination

New detectors technologies able to cope with harsh environmental conditions

ruben@lip.pt

Improved data analysis with integrate machine learning algorithms

What is Astroparticle Physics?

Study the properties of matter and interactions

Astrophysics / Cosmology Study Universe's evolution and surrounding astrophysical objects

Astroparticle physics

Astrophysics

Particle physics

Understand the dynamics of our Universe through the radiation/particles collected at Earth

Cosmology

Acknowledgements

REPÚBLICA PORTUGUESA

Ruben@bpcptção

BACKUP SLIDES

Slide from X. Rodrigues @ LIP seminar

Pierre Auger Observatory (Low energy extensions)

\diamond **HEAT**

♦ 3 additional FD telescopes with a high elevation FoV 30° - 60°, $E > 10^{17} \, eV$

- ♦ Infill Denser array
 - ♦ 433 m grid with 19 stations
 - \Rightarrow 750 m grid with 61 stations
- AMIGA Buried scintillators (muon detectors)
 - ♦ 19 (61) stations in 433 (750) m array, $10^{16.5} < E/eV < 10^{19}$
 - \Rightarrow 30 (60) m² scintillator modules
 - ♦ 2.3 m below ground

Auger Engineering Radio Array (AREA)

♦ 153 antennas in 17 km², $E > 4 \times 10^{18}$ eV

ruben@lip.pt

Arrival directions: intermediate scale

 \diamond The most significant excess at Cen A 4σ

 \diamond Most significant signal at 3.8 σ for Star Burst Galaxies catalog

Several likelihood tests for correction of arrival direction with astrophysical catalogs

Neutral particles searches

Photons

No UHE photons or neutrino have been observed yet

ruben@lip.pt

Neutrinos

Mass composition enhanced anisotropy

 \diamond Heavier composition from the galactic plane (< 4 σ) \diamond Combined spectrum + composition fit suggest an acceleration mechanism $\propto A$

Exploration of inclined showers

- \diamond Muons \rightarrow Assess Hadronic interaction models
- ♦ Data selection
 - ♦ Zenith angles [62°; 80°]
 - $* E > 4 \times 10^{18} eV$

 \diamond Inclined shower \rightarrow Muons

 Energy given by the Fluorescence Detector

 $\rho_{\mu}(\text{data}) = N_{19} \cdot \rho_{\mu}(\text{QGSJETII03}, p, E = 10^{19} eV, \theta)$

$$R_{\mu} = \frac{N_{\mu}^{data}}{N_{\mu,19}^{MC}}$$

Measurement of the EAS muon content

- Done using hybrid inclined showers
- Perform a likelihood fit including all reconstruction uncertainties (detector, energy...)
- Extraction of the two first momenta of the muon distribution as a function of the primary energy
 in the primary
 interprimary
 in the pri

Phys.Rev.Lett. 126 (2021) 15, 152002

Sensitive to the EAS muon number - R_{μ}

Sensitive to the EAS calorimetric energy - E

EAS muon fluctuations

Phys.Rev.Lett. 126 (2021) 15, 152002

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X_{max} data

L. Cazon, RC, F. Riehn, PLB 784 (2018) 68-76

 α_1 is the fraction of energy going into the hadronic sector in the first interaction

$$\sigma(\alpha) \to 70\% \, \sigma(N_{\mu})$$

Suggestion that muon deficit might be related with description of low energy interactions

ruben@lip.pt

Proton-air cross-section

the X_{max} distribution tail ♦ If there is a large fraction of protons

Proton-Air Cross-section

34th ICRC, PoS (2015) 401

Proton-proton Cross-section

Testing exotic scenarios

- Put the strongest limit on the existence of ultra-relativistic magnetic monopoles (MM)
 - Test on fundamental particle physics exotic scenarios
 - Relics of phase transitions in the early universe
- AMM produce air showers with a distinct
 signature from standard ones
 - Should be easily observed by the Auger FD
 - $\diamond \quad E_{mon} \approx 10^{25} \, \mathrm{eV}$
 - $A M_{mon} \in [10^{11}; 10^{16}] \,\mathrm{eV/c^2}$

Phys.Rev. D94 (2016) no.8, 082002

Elves

Auger Prime detectors

New electronics (UUB) and Scintillators(SSD)

Underground Muon Detector (UMD)

High dynamic range PMTs

The strategy VERTICAL (0-60°)

AugerPrime timeline

More trouble for Hadronic Interaction Models...

 \diamond Combined fit of energy scale (R_E) and hadronic component rescaling (R_{had}) [Hybrid: SD + FD]

 $S_{\text{resc}}(R_E, R_{\text{had}})_{i,j} \equiv R_E S_{\text{EM},i,j} + R_{\text{had}} R_E^{\alpha} S_{\text{had},i,j}$

Depth of maximum of muon production depth $(X^{\star \mu}_{max})$

Phys.Rev.Lett. 126 (2021) 15, 152002

- Sample shower secondary particles reaching the ground ♦ 100% duty cycle
 - \diamond Arrival time \rightarrow primary cosmic ray direction
 - Energy estimation: signal at 1000 meters from the shower core

Surface Detectors

- FD: collects the fluorescence light produced by the shower development
- Only operate in moonless clear sky nights
 (~15% duty cycle)
 - \diamond Energy \rightarrow integral of the collected photons
 - ♦ Primary composition → Shower maximum depth

