HADRON PHYSICS FROM NUCLEI TO QUARKS AND GLUONS

Elmar P. Biernat

CFTP, Instituto Superior Técnico, Universidade de Lisboa and LIP

February 5, 2024

Mini-School on Particle and Astroparticle Physics, Oeiras

Elmar Biernat (CFTP/IST and LIP)

From nuclei to quarks and gluons

OUR GROUP: LISBOA, ÉVORA, GRAZ, NEWPORT NEWS

Teresa PeñaAndré TorcatoAlfred StadlerRaúl TorresAna ArriagaEduardo FerreiraFranz GrossAndré NunesGernot EichmannE. B.

3. 3

▲ 同 ▶ → 三 ▶

WHAT WE DO & WANT TO KNOW

We investigate the strong force using quantum field theory

 $\int_{\Gamma} \int_{\Gamma} \int_{\Gamma$

The 2 big questions:

- Where does 98% of the mass of ordinary matter come from?
- Origin of confinement? (*Millennium Prize Problem*: US \$1 million by Clay Mathematics Institute)

KEY EXPERIMENTS AND LABS

ALICE, LHCb, COMPASS (CERN), Switzerland BaBar (Slac), USA BELLE (KeK), Japan BES Collab., China CLEO (Cornell), USA Hall-A and Hall-D (GlueX) (JLab), USA J-PARC, Japan NICA, Russia PANDA (FAIR-GSI), Germany RHIC, future EIC (Brookhaven NL), USA

THE STANDARD MODEL

- forces (gauge bosons): electromagnetic (γ) , weak (W^{\pm}, Z^0) and strong $(g_1 \dots g_8)$
- matter (fermions): quarks and leptons

- leptons interact via γ, W^{\pm}, Z^{0}
- quarks interact via $\gamma, W^{\pm}, Z^0, g_1, \ldots, g_8$
 - \Rightarrow only elementary particles that interact with all fundamental forces

Elmar Biernat (CFTP/IST and LIP)

STRONGLY-INTERACTING MATTER IN THE UNIVERSE

• quarks interacting strongly form bound states: Hadrons

- residual interquark forces ≡ nuclear force (mesons) between neutrons & protons → bind to form nuclei
- scale of hadron physics
 - $\sim 1~\mathrm{fm} = 0.000\,000\,000\,001~\mathrm{m}$!

Elmar Biernat (CFTP/IST and LIP)

From nuclei to quarks and gluons

QUARK MODEL AND QCD

- mesons: quark-antiquark, baryons: 3 quarks
- Δ⁺⁺: 3-quark wave function ψ_{3q} = ψ_{space}ψ_{spin}ψ_{flavour} not antisymmetric ⇒ need additional degree of freedom: color charge Red, Green, Blue: R+G+B=White
- hadrons only observed as white, colour-neutral (colour singlets)

QUARK MODEL HADRONS

Particle Data Group (2023)

	LIGHT UNFLAVORED				STRANGE		CHARMED, STRANGE		cc continued	
1	(S = C	- 8 - 6)	C	$\{S = \pm 1, C\}$	= B = 0	$(C = \pm 1,$	S = ±1)		$P(P^{c})$	
	$P(F^{*})$		$P(P^{*})$		$\langle \mathcal{F} \rangle$		$I(J^{*})$	 	0+(2++)	
• π [±]	1-(0-)	 p3(2690) 	1+(3)	• K [±]	$1/2(0^{-})$	 D²₁ 	0(0_)	X(3340)	34(344)	
• z ⁰	1-(0-+)	 p(1700) 	1+(1)	• K ²	3/2(0~)	 D_i^{*±} 	0(?1)	• \$(4040)	0 (1)	
• 7	0*(0-*)	 a₂(1700) 	1_(5++)	• K {	1/2(0~)	 D[*]₁₂(2317)[*] 	0(0+)	 Xc1(4140) 	0+(1++)	
 6(500) 	0 + (0 + +)	a ₁ (1710)	1-(0++)	• K	1/2(0_)	 D₁(2660)[±] 	0(1+)	 ψ(4160) 	0 (1)	
 p(775) 	1+(1)	 f₁(1710) 	0+(0++)	 K;(703) 	3/2(0+)	 D₁₁(2536)* 	0(1+)	X(4160)	5.(5.1)	
 ⇒(282) 	0 (1)	X(1750)	?[0]]	 K*(892) 	1/2(1-)	 D[*]₁₂(2573) 	0(2+)	• ¢(4230)	0-(1)	
 η'(958) 	0*(0-*)	n(1760)	0*(0-*)	 K₂(1270) 	1/2(1*)	D _{st} (2550)*	0(07)	 X₍₁(4274) 	0+(1++)	
 \$(980) 	0+(0++)	fi(1770)	0+(0++)	 K₂(1400) 	1/2[1*]	 D[*]₁(2700)[±] 	0(1-)	X(6350)	0.4(5:4)	
 a₀(980) 	1.(0.4.4.)	• n(8880)	1 (0 +)	 K*(1410) 	1/2(1)	D ₁₁ (2850) ⁴	0(1)	• \$(\$360)	0-(1)	
 \$\phi(1023)\$ 	0-(1)	5(1820)	01(511)	 K¹₁(1630) 	3/2(0*)	 D[*]₁₂(2850)[±] 	0(37)	• \$\$(4415)	0 (1)	
 \$1(1170) 	0-(1 + -)	X(1835)	5:(0 - +)	 R⁺₂(1430) 	3/2(2*)	D, (3040) ²	0(??)	Xc0(4500)	0*(0**)	
 b₁(1235) 	2*(1***)	• \$\$(1850)	0 (3)	 K(1460) 	3/2(0~)			X(4630)	0+(1.4)	
 st(7503) 	1 (1 1 1)	73(2855)	0*(1 *)	K ₂ (1580)	1/2[2]]	BOT	09	• \$(4660)	0.0	
 F2(12F0) 	012111	• m (1870)	0.(2 .)	K(1630)	1/2(?*)	(8 =	197	Xc1(4685)	office #1.45	
• J(1585)	of (1 - 1)	• mp(1880)	1 (2)	 K_t(1650) 	1/2(1*)	• 8*	1/2(0-)	Xc0(4100)	0.(0)	
• 1(1295)	1-10-10	p(1900)	at (a + t)	 K.(1980) 	1/2(1-)	• 8 ¹	1/2(0_)	5	δ	
• ±(1330)	1 (0 - 1)	A2(1910)	0, [5, 1, 1]	 K₂(1770) 	1/2[2]	• 8* / 8" AD	NOCTURE	• n.(15)	0+(0-+)	
 32(1320) 	1 2 1 1	a ₁ (1950)	1 (0 + +)	 K[*]₃(1780) 	1/2[3]	 B⁺/B⁺/B⁺ ADM/TTER 	/b-baryon	 T(15) 	0-(1)	
• 6(1300)	10100-00	• 72(1950)	0.[5	 K₂(1820) 	1/2(2)	Valand Va	CKM Ma-	 10(1P) 	0+(0++)	
• = [1400]	at in the	• Ac(1970)		K(1830)	1/2(0))	trix Element	IS	 Xm(1P) 	0*(1**)	
1 (1416)	0-010-0-0	ps(1990)	1-(3-1)	R(1950)	1/2(0*)	• B*	1/2(27)	 b₀(1P) 	0-(1+-)	
- 6/14203	ata + +)	= 6 (2009)	aterta	 K[*]₂[1980] 	3/2(2*)	 8(5721) 	1/2(1*)	 	0+(2++)	
- (1420)		- 6(2310)	at (a + +)	 K (2045) 	1/2(4+)	85(5732)	2(21)	n.(25)	0+(0-+)	
6(1620)	ato th	- 6(2350)	0+(+++)	K ₂ (2250)	1/2(2-)	 8^o₂(5747) 	1/2(2*)	 T(25) 	0-(1)	
a a (1450)	1-10++1	-121000	1-(2-+)	K ₁ (2320)	3/2(3*)	8,(5840)	1/2(?'_)	 T₂[1D] 	0.[5]	
. (1450)	1+01	6(2100)	a+m++i	R(2380)	1/2(5)	 8 (\$970) 	1/2(?')	 	0+(0++)	
• = (1475)	0+10-+1	6(2150)	0+(2++)	K ₄ (2500)	1/2(4)	BOLLOW	STRANCE	• Xm(2P)	0+(1++)	
• 6(1500)	010111	0(2150)	1+01	K(310)	51(511)	18 = +1	S = II	 h₀(2P) 	0-(1+-)	
5(1510)	0+(1++)	• ((2170)	0-(1)	CHARM	IED.	• 61	0/071	 X10(2P) 	0+(5++)	
 C(1525) 	0+12++1	6(2200)	0+00++1	10 - 4	11	• 0	010 1	 T[35] 	0-(1)	
6/1565)	0+12++1	6(2220)	a+12++	- 01	1 (5(877)	• 0, month	010 1	 XH(3b) 	0+(1++)	
e(1570)	1+01	- 4()	0.4 * *)	- 01	1/2(0)	• B ₁₂ (5030).	0(1-)	 χ₁₀(3P) 	0+(5++)	
E-(1595)	0-(1+-)	n(2225)	0+10-+1	• D*120220	1/2(1-1	• 8 ²³ [2640].	3475	• T(45)	0_(1)	
• Tx (1600)	1-(1-+)	ex(2250)	1+131	· (2010)*	1/2(1-)	8, ((013)]	200	T(10753)	77[1]	
 a₁(1640) 	-1-it++i	• 5[2300]	0+12++1	 O[*](7308) 	1/2(0+)	8,7(6003)	0123	 T(10360) 	0 (1)	
6(1640)	0+(2++)	fg(2300)	0+(4++)	• (1670)	1/2(1+)	9 ²³ (6114).	0(1)	 r(11020) 	0 (1)	
 m [1645] 	0+(2-+)	fg(2330)	0+(0++)	 D. (2630)² 	1/2(1+)	BOTTOM, 4	HARMED	011	IER	
 ⇒(1650) 	0-(1)	 5[2340) 	0*(2++)	 D:124681 	1/2(2*1	(B = C	= ±1)	X1(5000)	?(0+)	
 -3(1670) 	0-(3)	Pa(2350)	1*(6)	D_C255012	1/2(8-1	 B⁺ 	0(07)	X ₄ (2900)	7(1)	
 z₂(1670) 	1"(2 *)	X [2370]	51(511)	D:1260810	1/2(1-1	 8,(25)[±] 	0(0_)	T _{er} [3875]*	· 7(? ^r)	
 \$\$\phi\$\$(1680)\$ 	0"(1"")	fg[2470)	0+(0++)	0"06401"	1/2(21)			 Z_c(3900) 	1+(1+-)	
1		fg[2510]	0*(6 * *)	ID-(274012	1/2(2-1			Z_(4000)	1/5(1+)	
1				 D1(2750) 	1/2(3-1	• 12(15)	9-10	 X(4020)[±] 	1*(?!)	
1				D1276010	1/2(1-1	• 3/(0(13)	******	X(4050)*	1 [?!*]	
1				(CODE) ⁰	1/2(2?)	· Act(17)	******	X(4055)*	17(2)	
1				0(0000)		• Xei(1P)		X(41E0) [±]	1 (?**)	
1						- (IP)	*****	Z _c (4200)	1.(1.4)	
1						- AG(IF)	a+10-+1	4 _{cr} (4220)	1/2(17)	
1						9-123	a - (a)	N _{c0} (4240)	1*(0)	
1						• • • [+ 3]	a-14	X(4250)*	1 (r ^(T))	
1						- (1823)	a-121	• Z _c (4430)	1.0.4)	
1						• (3842)	1-11-11	A (5548)*	37	
1						2101088601	a+10++1	A (0980)	1+0+-1	
1						• X-1[3872]	1+11+11	 Z₁(10610) Z (10610) 	1+0+-1	
						• Y-+[3915]	a+(a++)	 Cathor Str 	1-11-1 m	

qq mesons

qqq baryons

- 0		1/2+		A(1212)	1/2+		5+	$1/2^{+}$		A ⁺	1/2+		18	1/2+	
- 13		1/2+		A(1600)	3/2+	****	Σ0	1/2+		4.(2595)*	1/27		A.(5912)0	1/2-	
	N(1660)	1/2+		A(1620)	1/2-	****	5	1/2+	****	4.(2625)*	3/2-	***	4.(5930)0	3/2-	
	W15201	3/2-		A(1701)	3/2-		£(1385)	3/2+		4.1226514			A.(6020)0	1/2*	***
	W15351	1/2-		A(1750)	1/2*		E(1580)	3/2-		4-128600*	3/2*		A.(6146) ⁰	3/2+	***
	W16501	1/2-		∆(1900)	1/2-		E(1620)	1/2-		A.(2880)*	5/2+		A.(6152)0	5/2+	
	W(1675)	5/2-		∆(1905)	5/2+		E(1660)	1/2*		4.129401*	3/2-		Es	1/2*	***
	N(3600)	5/2+		A(1910)	1/2+		20(1670)	3/2-	****	F.(2455)	1/2*	****	5.	3/2*	***
	N(1700)	3/2-	***	A(1920)	3/2+	***	E(1750)	1/2-	***	5.(2520)	3/2+		T-160921+		***
	W(1710)	1/2*		A(1930)	5/2-	***	E(1775)	5/2-	****	E.(2800)			T_160921		***
	N(1720)	3/2+		A(1941)	3/2-	••	£ (1780)	3/2+		±t	$1/2^{+}$		17	1/2+	•••
	N(1860)	5/2+		.6(1950)	7/2+	****	E(1800)	1/2+	••	22	1/2*		-	1/2*	***
	N(1875)	3/2-	***	∆(2000)	5/2+	**	E(1900)	1/2-	**	124	1/1+		= (6336)-	int.	
	N(3680)	1/2+	***	∆(2150)	1/2-		E(1910)	3/2-		126	1.01		= CERMET?	2.04	
	N(1895)	1/2-		A(2200)	1/2-	•••	E(1915)	5/2*		= (3646)	2.11		= (6466)-	2/11	
	N(1900)	3/2+	****	A(2303)	9/2*	**	E(1960)	3/2*		= (2260)	1/2-		= (6100)	2/2-	
	N(1990)	7/2+		∆(2350)	5/2-		E(2010)	3/2-		= (3838)	2/2-		= (6332)-	97 A	
	N(2000)	5/2+		A(2390)	7/2+		£(2030)	1/2+		= (3833)	3) e		= (62227)		
	N(2040)	3/2+		A(2403)	9/2-	••	£ (2070)	5/2+		= (2020)			= (63277)		
	N(2060)	5/2-		A(2420)	11/2*	****	E(2093)	3/2*		= (2970)	1/12		E.(6133)		
	N(2100)	1/2+	***	∆(2750)	13/2	**	E(2100)	7/2-	•	E.(3155)	*/*		0	1/2*	***
	N(2120)	3/2-		∆(2950)	15/2*	••	E(2110)	1/2-	•	=_(3160)			0.463161-		
	N(2190)	7/2-					E(2230)	3/2*	•	=.(3123)			0.163301		
	N(2220)	9/2*		Λ	1/2+	****	E(2250)		••	03	$1/2^{+}$		0,163401		***
	N(2250)	9/2-		A(1380)	1/2-	**	Σ(2455)		•	0.(2701)0	3/2*		0,163501		
	N(2300)	1/2+	••	A(1405)	1/2-	****	Σ(2620)		•	Q.(3000)0					
	N(2570)	5/2-	**	A(1520)	3/2-		£ (3000)		•	0.(3050)0		***	P.(61121*		
	N(3600)	11/2~	***	A(1600)	1/2*		E(3170)		•	0.(306510			P.(4380)*		
	N(2200)	13/2*		A(1670)	1/2"	****				Q.(309010		***	P.(4440)*		
				A(1650)	3/2-		29	1/2+		Q.(3120) ⁰			P.(6457)*		
				A(1710)	1/2+	•	2-	1/2+	••••						
				A(1800)	1/2-	***	Ξ(1530)	3/2*	****	=t.		•			
				A(1810)	1/27		E(\$670)		•	122					
				A(1820)	5/2*		$\Xi(2690)$								
				A(1830)	5/2		H(1850)	3/2-							
				A(1890)	3/2*		=(1950)								
				A(2000)	1/2		=(2030)	≥ §.							
				A(2050)	3/2	÷	$\Xi(5350)$		•						
				A(2070)	3/2*		$\Xi(2250)$								
				A(2080)	5/2	2	Ξ(2370)								
				A(2065)	1/27		=(2500)		•	1					
				A(2300)	12		07	a+		1					
				4(2225)	5/2*		M (202012)-	3/2*		1					
				4(2325)	3/2		2(2210)-			1					
				A(2686)	2/2		2(2250)			1					
				ri(ca60)			000001			1					
							a(1+10)			1					

Elmar Biernat (CFTP/IST and LIP)

э

A (10) × (10)

CLASSIFICATION (MESONS, NON-RELATIVISTICALLY)

• total angular momentum $\vec{J} = \vec{L} + \vec{S}$, orbital $\vec{L} = \vec{r} \times \vec{p}$, spin $\vec{S} = \vec{s}_q + \vec{s}_{\bar{q}}$ $|L - S| \le J \le L + S = 0, 1, 2, \dots, \quad S = 0, 1$

• parity
$$\mathcal{P} = \underbrace{(-1)^{L}}_{\text{angular intrinsic}} \underbrace{(-1)}_{l=1} = (-1)^{L+1}$$

• charge conjugation $C = \underbrace{(-1)^L}_{L} \underbrace{(-1)^{S+1}}_{L-1} \underbrace{(-1)}_{L-1} = (-1)^{L+S}$

angulai spili

• G-parity
$$\mathcal{G} = (-1)^{l+L+S}$$

Meson		$J^{\mathcal{PC}}$	L	5	$^{2S+1}L_{J}$
Pseudoscalar	Р	0-+	0	0	${}^{1}S_{0}$
Scalar	5	0++	1	1	³ P ₀
Vector	V	1	0,2	1	${}^{3}S_{1}, {}^{3}D_{1}$
Pseudovector	A ⁻	1+-	1	0	$^{1}P_{1}$
Axial-Vector	A ⁺	1++	1	1	${}^{3}P_{1}$
Tensor	T	2-+	2	0	$^{1}D_{2}$
Tensor	T	2	2	1	³ D ₂
Tensor	T	2++	1,3	1	${}^{3}P_{2}, {}^{3}F_{2}$

• example 1: Pseudoscalar, $\mathcal{P} = - \Rightarrow L = 0, 2, 4..., J = 0 \Leftrightarrow S = 0, 1 \Leftrightarrow \mathcal{C} = +$

• example 2: Vector, $\mathcal{P} = - \Rightarrow L = 0, 2, 4 \dots, J = 1 \Leftrightarrow S = 0, 1 \Leftrightarrow \mathcal{C} = -$

- ロト - (理ト - (ヨト - (ヨト -)ヨ

FLAVOR MULTIPLETS AND EXOTICS

 form qq̄ and qqq combinations from u, d, and s (anti-)quarks ⇒ flavour multiplets

e.g. pseudoscalar meson (J = 0) nonet and baryon $(J = \frac{1}{2})$ octet

• other color-singlet combinations: **exotic** mesons and baryons tetraquarks $(qq\bar{q}\bar{q})$ (\exists candidates),

pentaquarks $(qqqq\bar{q})$ (discovered 2015 by LHCb @ CERN), etc...

Standard Hadrons

Exotic Hadrons

Elmar Biernat (CFTP/IST and LIP)

From nuclei to quarks and gluons

February 5, 2024 8 / 19

CONFINEMENT AND THE GLUON

 \rightarrow hadronize

• $p-\bar{p}$ scattering \rightarrow collimated **jets** of hadrons angular distribution of 2-jet-events \sim " $\sin^{-4}\theta/2$ -formula"

QCD LAGRANGEAN

spinor for color-triplet quarks

$$\psi = \left(\begin{array}{c} q_R \\ q_G \\ q_B \end{array}\right)$$

- A^a_μ are 8 gluon fields (a = 1, ..., 8)
- **non-Abelian** field-strength tensor $F^{a}_{\mu\nu} = \partial_{\nu}A^{a}_{\mu} - \partial_{\mu}A^{a}_{\nu} + gf^{abc}A^{b}_{\mu}A^{c}_{\nu}$

CHARGE SCREENING: QED vs. QCD

Quantum electrodynamics (QED)

Elmar Biernat (CFTP/IST and LIP)

February 5, 2024 11 / 19

RUNNING COUPLING

- Anti-screening in QCD \Rightarrow strong "running" coupling $\alpha_s \equiv g^2/4\pi$ becomes small at short distances (large momentum transfer)
- at high energies, quarks behave as free particles: asymptotic freedom
 ⇒ perturbation theory √
 GROSS, WILCZEK and POLITZER PRL 30, 1973; 'T HOOFT, 1972
- at short distances: quarks exchange massless gluons ⇒ Coulomb-type 1/r-term present in static QCD potential for heavy quarks

4 A 1

• at large distance coupling becomes strong: cannot isolate quark Confinement!

イモトイモト

LINEAR CONFINEMENT

- confinement cannot be obtained from finite number of gluon exchanges ⇒ non-perturbative treatment necessary: e.g. lattice QCD, continuum models
- (non-relativistic) 'Cornell' $q\bar{q}$ potential EICHTEN *et al* PRD 17, 1978,0 and 21, 1980; RICHARDSON PLB 82, 1979 $V(r) = -\frac{4}{3}\frac{\alpha_s}{\frac{r}{4}} + \sigma r + C$ color factor $\frac{4}{3} \hookrightarrow$ Hands-on Hadrons I
- ✓ good quantum mechanical description of cc̄ and bb̄
 → Hands-on Hadrons II
- $\sigma = 0.85 \text{ GeV/fm:} \simeq \text{constant force}$ of **14 tonnes!**
- light mesons require relativistic treatment
 e.g. "relativized" quark models: GODFREY, ISGUR PRD 32, 1985
 ✓ good description of meson spectrum
 - × not Poincaré covariant
 - \times not based on quantum field theory

ALLTON et al, UKQCD Collab., PRD 65, 2002

QUARK AND PION MASSES

- confinement: single quark not observed as free isolated particle ⇒ how to define their mass?
- nucleon mass $m_{\rm N} = 939$ MeV \Rightarrow effective (constituent) quark mass $m_{u,d} \approx 300$ MeV
- questions

observe: pion π[±] (139 MeV) much lighter than the proton (938 MeV);
 Why is the pion so light?

```
(current) quark masses of Standard Model and \mathcal{L}_{QCD}

m_u \approx 2 \text{ MeV}, m_d \approx 5 \text{ MeV}

Particle Data Group 2023

current quarks \stackrel{\text{connection?}}{\longleftrightarrow} constituent quarks?

98% of m_N \Leftrightarrow most of the mass of ordinary matter in Universe!

What mass-generating mechanism can explain this?
```

< 回 > < 回 > < 回 >

CHIRAL-SYMMETRY BREAKING

- If m_u = m_d = 0: L_{QCD} satisfies chiral symmetry
 ⇒ there should be parity doublets in baryon spectrum
 BUT: no parity doublets observed!
 ⇔ chiral symmetry must be broken!
- spontaneous chiral-symmetry breaking:
 - bulk of constituent quark masses generated by the strong interaction
 - appearance of 3 massless Goldstone bosons \simeq 3 pions π^+ , π^- , π^0

m_u and *m_d* small
 ⇒ physical pions anomalously light

• $m_\pi^2 \propto (m_u + m_d)$ Gasser, Leutwyler, Phys.Rep. 87, 1982

GIUSTI, LATTICE 2002, hep-lat/0211009

DESCRIPTION OF HADRONS

- strong coupling 'constant' α_s large at large distances
 ⇒ perturbation theory fails × scale ~ 1 fm ~ size of hadron
- QCD bound-state problem not yet solved x
 - \Rightarrow need effective non-perturbative tools based on QFT:
- Covariant Spectator Theory based on Gross equation
 F. Gross PR 186, 1969
- Dyson-Schwinger and Bethe-Salpeter equations

CURRENT RESEARCH

 \Rightarrow Learn about nature of strong force and confinement!

3

< ロ > < 回 > < 回 > < 回 > < 回 >

FURTHER INFORMATION

MEFT courses at Instituto Superior Técnico:

- QCD and Hadron Physics (2nd period) E.B., L. Apolinário (LIP)
- Nuclear Physics (1st period) E.B., T. Peña, A. Stadler, R. Silva (CTN), N. Catarino (CTN)

Literature for further reading:

Elmar Biernat (CFTP/IST and LIP)

From nuclei to quarks and gluons

February 5, 2024 18 / 19

Eur. Phys. J. C (2023) 83:1125 https://doi.org/10.1140/epic/s10052-023-11949-2 The European Physical Journal C

Review

50 Years of quantum chromodynamics

Introduction and Review

Pentaquark discovery in 2016!

THANK YOU!

Elmar Biernat (CFTP/IST and LIP)

From nuclei to quarks and gluons

3

イロト イポト イヨト イヨト