

CMS Experiment at the LHC, CERN Data recorded: 2022-Jul-05 14:48:56.743936 GMT Run / Event / LS: 355100 / 51596902 / 53

Physics @ LHC

Probing the Standard Model & beyond

Nuno Leonardo, LIP & IST

Oeiras 5-6. FEB. 2024

proton collisions @13.6 TeV (Run3)

Run: 427394 Event: 3038977 2022-07-05 17:02:31 CEST

CMS Experiment at the LHC, CERN Data recorded: 2023-Sep-26 17:49:16.755456 GMT Run / Event / LS: 374288 / 5946329 / 55

heavy-ion collisions (2023)

LHC = accelerator + detectors + physics

LHC: the only apparatus capable of creating and detecting *every* standard model particle

antiparticles

LHC = accelerator + detectors + physics

Portuguese participation, LIP & IST)

(with

LHC: the only apparatus capable of creating and detecting every standard model particle

antiparticles

The accelerator

The LHC is the **world-leading** particle accelerator & collider

Delivering **unprecedented** energies and intensities

The LHC detectors are the most **sophisticated** scientific tools yet

Machine and detectors not static, systematically improved/**upgraded**

the CERN accelerator complex

Acceleration & beam optics

- only charged particles can be accelerated: p, p, e[±], (μ [±]), ions
 - e.g. LHC (pp, p-Pb, PbPb); Tevatron (pp); LEP, PEP, KEKB (e⁺e⁻); RHIC (ions); FAIR (p-ions)
- acceleration by radiofrequency

- trajectory bending via dipoles
- beam focusing via quadrupoles
- accelerating particles radiate
 - synchrotron radiation

Physics@LHC | Nuno.Leonardo@cern.ch

Proton-proton collision

Some specs:

Beam structure

circumference: 27 km bunches: 3564 + 3564 protons / bunch: 10¹¹

Bunch Crossing 4 10⁷ Hz

Proton Collisions 10⁹ Hz

Parton Collisions

4000 W[±] s / sec 1200 Z⁰ s / sec 17 tt̄ s / sec 1 h⁰ s / sec

New Particle Production 10⁻⁵ Hz

We're interested in rare events

Real-time filtering: **Trigger**

Trigger is a crucial & risky business: discarded events can never be recovered. "The trigger does not determine which model is right, only which data is left."

LHC schedule

- The LHC has been operating for almost 15 years, 15more to go
- Two main parameters determine the physics reach
 - Collision **energy** (\sqrt{s}) in Run3 attained another record (13.6 TeV)
 - Luminosity (L) related to the collision rate
- both have been increasing, but the forthcoming jump will be in lumi

LHC schedule

The detectors

a Particle Detector

MEHTIN

ME+11/18

ME+1/1/20

ME+1/1/19

ME+11121

HE+ RBX 09

HE+ RBX 10

HE+ RBX 11

6, 101 12

ILG LIFTLUX

calorimeters:

measure particle's energy by absorbing it

trackers:

detect trajectory of charged particles muon chambers: detected in outer detector layers

Only *quasi*-sable particles are directly detectable:

e, μ, γ, π, Κ, p, n

All other, unstable particles decay, and their (stable) final states are detected.

a H→yy candidate

High-Luminosity LHC

- an *new*, more intense LHC
- require refurbished detectors!
- upgrade with state-of-the-art technologies
- novel or redesigned detector components

NEW TECHNOLOGIES FOR THE HIGH-LUMINOSITY LHC

being advanced now

HL-LHC: adding precision timing detectors

Example challenge for the high-luminosity LHC phase: pile-up

- can expect up to 200 simultaneous collisions per bunch crossing
- detectors do not have the spacial resolution to distinguish resulting vertices
- solution: add time dimension, i.e. develop novel precision timing detectors

[Real life event from special LHC run in 2016 w/ intensity bunches]

Run3: a muon telescope @LHC

- Example (ongoing this week!):
- new detector for measuring muon flux at LHC
- establish innovative technology (sRPC), designed and built @LIP, deploying in LHC environment
- being installed in the SND@LHC tunnel this week
- additional uses requested by community, beyond physics measurement (environment, upgrades)

How do we 'see' particles?

the discovery of the **b quark**

the SM re-discovery @ LHC

1977

the discovery of the **b quark**

the SM re-discovery @ LHC

Decades worth of particle physics discovery ... in a single plot!

 $\begin{array}{c} \bullet & \mathsf{Data} \\ \bullet & \mathsf{m_H}=126 \; \mathsf{GeV} \\ \bullet & \mathsf{g} \\ \bullet & \mathsf{g}$

CMS

 $\sqrt[4]{s}$ = 7 TeV, L = 5.1 fb^{-1} ; $\sqrt[4]{s}$ = 8 TeV, L = 19.7 fb^{-1}

CMS Experiment at the LHC, CERN Data recorded: 2015-Aug-22 02:13:48.861952 GMT Run / Event / LS: 254833 / 1268846022 / 846

CMS Experiment at the LHC, CERN Data recorded: 2015-Nov-02 21:34:00.662277 GMT, Run / Event / LS: 260627 / 854678036 / 477

CMS Experiment at the LHC, CERN Data recorded: 2015-Oct-27 11:51:17.472320 GMT Run / Event / LS: 260043 / 994191540 / 754

 $\rho = \frac{p}{ZeB}$ • **B** Physics@LHC | Nuno.Leonardo@cern.c

Neutrinos cannot be detected at the LHC! ... or can they

The Dawn of Collider Neutrino Physics **@LHC**

Physics

The Standard Model of Particle Physics

SM = Quantum field theory + Experimental measurement & discovery One of the great achievements of 20_{th} century science.

Physics@LHC | nuno@cern.ch

The Higgs boson

SM = Quantum field theory + Experimental measurement & discovery

One of the great achievements of 20th century science.

Physics@LHC | nuno@cern.ch

The Higgs boson (discovery) turns 12

The Higgs boson, ten years after its discovery

The landmark discovery of the Higgs boson at the Large Hadron Collider exactly ten years ago, and the progress made since then to determine its properties, have allowed physicists to make tremendous steps forward in our understanding of the universe

4 JULY, 2022

Research Articles

Read the celebratory CMS & ATLAS papers

A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

Ten years after the discovery of the Higgs boson, the ATLAS experiment at CERN probes its kinematic properties with a significantly larger dataset from 2015–2018 and provides further insights on its interaction with other known particles.

The ATLAS Collaboration
Article Open Access 4 Jul 2022 Nature

A portrait of the Higgs boson by the CMS experiment ten years after the discovery

The most up-to-date combination of results on the properties of the Higgs boson is reported, which indicate that its properties are consistent with the standard model predictions, within the precision achieved to date.

The CMS Collaboration
Article Open Access 4 Jul 2022 Nature

Collection 04 July 2022

The Higgs boson discovery turns ten

The discovery of the Higgs boson was announced ten years ago on the 4th of July 2012 — an event that substantially advanced our understanding of the origin of elementary particles' masses. In this collection of articles from *Nature, Nature Physics* and *Nature Reviews Physics* we celebrate this groundbreaking discovery and reflect on what we have learned about the Higgs boson over the intervening years.

https://home.cern/news/press-release/physics/higgs-boson-ten-years-after-its-discovery https://www.nature.com/co

https://www.nature.com/collections/gbfhieacie

З

The Standard Model: precision measurements

The SM describes all ^(*) experimental data !

SM = Precision

data vs theory

					hig	gs
ATLAS		— σ (σ	obs.)	Total un	certai	nty
m _H = 125.36 GeV		— σ (e	exp.)	± 1σ οι	nμ	
$H \rightarrow \gamma \gamma$ $\mu_{obs} = 1.17$	0.28 0.26					
$\mu_{exp} = 1.00$	-0.25 -0.23				: 	
$H \rightarrow ZZ^{\star}$ $\mu_{obs} = 1.46$	0.40 -0.34		-		-	
$\mu_{exp} = 1.00$	-0.31 -0.26					
$H \rightarrow WW^{\star} \mu_{obs} = 1.18$	-0.24 -0.21		-			
$\mu_{exp} = 1.00$	-0.21 -0.19					
$\textbf{H} \rightarrow \textbf{bb} \mu_{\text{obs}} = 0.63$	0.39 -0.37		-			
$\mu_{exp} = 1.00$	-0.41 -0.38					
$H \rightarrow \tau \tau$ $\mu_{obs} = 1.44$	0.42		-		-	
$\mu_{exp} = 1.00$	-0.36 -0.32	<u> </u>				
$H \rightarrow \mu\mu$ $\mu_{obs} = -0.7$	+3.7 -3.7					
$\mu_{exp} = 1.0$) ^{+3.4} -3.5					
$H \rightarrow Z\gamma$ $\mu_{obs} = 2.7$	+4.6 -4.5		:		:	
$\mu_{exp} = 1.0$)+4.2 -4.2					
Combined $\mu = 1.18$	0.15		:		:	
$\mu = 1.00^{\circ}$	0.13		-	1		
exp -	-0.12					· · ·
vs = 7 TeV, 4.5-4.7 fb ⁻¹	-	-1	0	1	2	3
√s = 8 TeV, 20.3 fb ⁻¹			S	ignal stre	ength	(μ)
			l	u = dat	a/SN	Л

So, Why the need to go beyond the SM?

SM + gravity \neq cosmos

Dados que decididamente não conseguimos explicar:

assimetria matéria-antimatéria (CPV?...) — matéria escura (WIMPs, ALPs, ...?) — inflação (inflatão?)

• Hierarquia electrofraca

- Fraca/Gravidade ~10²⁴
- EWK << Planck (Deserto?)</p>
- Instabilidade da massa do Higgs
- Fine tuning
- Naturalness

• Hierarquia de sabor

- Porquê tantos parâmetros (19+)?
- Porquê 3 famílias ('Who ordered that?')
- Porquê $\theta_{QCD} < 10^{-9}$ (Strong CP problem)
- Porquê hierarquias enormes nas massas e acoplamentos dos fermiões?

Physics goals at the LHC?

- Test the Standard Model (SM)
 - Precision measurements + rare processes
- Find physics beyond the Standard Model (BSM)
 - Direct and indirect searches for new particles

Produce BSM particles in the collisions + detect their decay products

Infer presence of BSM particles through their effect on properties of SM particles

New particles discovered at LHC? interactions

observation of new low-mass rare decay (with data scouting)

72+1 new particles already discovered — and more awaiting to be discovered !

https://www.nikhef.nl/~pkoppenb/particles.html

72+1 new particles already discovered — and more awaiting to be discovered !

https://www.nikhef.nl/~pkoppenb/particles.html

an all-charm tetraquark (candidates)

And now, into a hot, deconfined medium

at large energy densities, QCD predicts the existence of a deconfined state of quarks and gluons -- the quark gluon plasma (QGP)

reproduced in heavy ion collisions

Rediscovering the SM particles... in HI!

Probing beyond the SM

Energy frontier

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

October 2019

0	Model	Signa	ature	∫£dt [fb-	1] Ma	ss limit					Reference
	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{k}_{1}^{0}$	0 ε.μ 2-6 mono-jet 1-3	jots E_T^{rai} jots E_T^{rai}	139 36.1	ē [10 x Degen.] ē [1x,8 x Degen.]	0.43	0.71		1.9	m(ξ ⁵)<400GeV m(ξ)-m(ξ ⁵)=5GeV	ATLAS-CONF-2019-040 1711.03301
Inclusive Searches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\ell}_{1}^{0}$	0 <i>e.µ</i> 2.6	jets E_T^{call}	[#] 139	e e		Forbidden		2.35	m($\hat{\epsilon}_1^0$)=0 Ge V m($\hat{\epsilon}_1^0$)=1 000 Ge V	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
	$\tilde{g}\tilde{g}$, $\tilde{g} \rightarrow q\tilde{q}(\ell \ell)\tilde{k}_{1}^{0}$	3 e.μ 4 ee.μμ 2	ets E_T^{rais}	36.1 36.1	ê ê			1.2	1.85	m(t [*] 1)<300GeV m(t [*] 1)=50GeV	1708.03731 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\ell}_1^0$	0 e.μ 7-1 SS e.μ 6	1 jets E ^{rai} jets	" 36.1 139	ê ê			1.15	1.8	m(ž ¹ ₁) <400GeV m(ž)-m(ž ¹ ₁)=200GeV	17 08.02 79 4 19 09.08 45 7
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow d\tilde{\chi}_1^0$	0-1 <i>e.μ</i> 3 SS <i>e.μ</i> 6	iots E _T	" 79.8 139	t t			1.25	2.25	m(t ²)<200GeV m(t)-m(t ²)=300GeV	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
\mathcal{X}^{J} gen. squarks drect production	$\tilde{b}_1\tilde{b}_1,\tilde{b}_1\!\rightarrow\!\!b\tilde{\ell}_1^0/\iota\tilde{\ell}_1^+$	Mu Mu	ltiple ltiple ltiple	36.1 36.1 139	δ ₁ Forbidden δ ₁ δ ₂	Forbidden Forbidden	0.9 0.58-0.82 0.74		$m(\tilde{\ell}_{1}^{0})=$ $m(\tilde{\ell}_{1}^{0})=200G$	$m(\tilde{r}_{1}^{0})=300 \text{ GeV, BR}(k\tilde{r}_{1}^{0})=1$ $300 \text{ GeV, BR}(k\tilde{r}_{1}^{0})=BR(k\tilde{r}_{1}^{0})=0.5$ $eV, m(\tilde{r}_{1}^{0})=300 \text{ GeV, BR}(k\tilde{r}_{1}^{0})=1$	1708.09288, 1711.03301 1708.09286 ATLAS-CONF-2019-015
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\ell}_2^0 \rightarrow b h \tilde{\ell}_1^0$	0 <i>e</i> ,µ 6	$b = E_T^{cal}$	" 139	δ ₁ Forbidden δ ₁	0.23-0.48	0	0.23-1.35	Am(2) Am	$(\tilde{t}_{1}^{0})=130 \text{ GeV}, m(\tilde{t}_{1}^{0})=100 \text{ GeV} \\ (\tilde{t}_{2}^{0}, \tilde{t}_{1}^{0})=130 \text{ GeV}, m(\tilde{t}_{1}^{0})=0 \text{ GeV} $	19 08.03 12 2 19 08.03 12 2
	$\tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow W h \tilde{\ell}_1^0 \text{ or } t \tilde{\ell}_1^0$ $\tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow W h \tilde{\ell}_1^0$ $\tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow \tilde{\tau}_1 h r, \tilde{\tau}_1 \rightarrow r \tilde{G}$	0-2 ε.μ 0-2 jet 1 ε.μ 3 jet 1 τ + 1 ε.μ.τ 2 jet	$(s/1-2b E_T^{clic})$ $(s/1b E_T^{clic})$ $(s/1b E_T^{clic})$ $(s/1b E_T^{clic})$	95.1 139 35.1	Ti Ti Ti	0,44-0.59	1.0	1.16		m(ℓ_1^0)=1GeV m(ℓ_1^0)=400GeV m(ℓ_1)=800GeV	1508.08816, 1709.04183, 1711.11520 ATLAS-CONF-2019-017 1803.10178
	$T_1 f_1, f_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 ε.μ 2 0 ε.μ mor	$2c = E_T^{cal}$ no-jet E_T^{cal}	" 36.1 " 36.1		0.46	0.85			m(\hat{t}_1^0)=0GeV m(t_1 ,z')-m(\hat{t}_1^0)=50GeV m(\hat{t}_1 ,z)-m(\hat{t}_1^0)=5GeV	1805.01649 1805.01649 1711.03301
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	1-2 e,μ 4 3 e,μ 1	$b = E_T^{nin}$ $b = E_T^{nin}$	" 36.1 " 139	I2 I2	Forbidden	0.32-0.88		m (2) m(2))=0 GeV, m(r_1)-m(t_1^0)= 180 GeV 360 GeV, m(r_1)-m(t_1^0)= 40 GeV	1708.03986 ATLAS-CONF-2019-016
	$\tilde{\chi}_1^* \tilde{\chi}_2^0 \operatorname{via} WZ$	2-3 e,μ ee,μμ ≥	E_T^{cal} $\geq 1 = E_T^{cal}$	36.1 139	$\frac{\hat{\chi}_{1}^{+} / \hat{\chi}_{1}^{+}}{\hat{\chi}_{1}^{+} / \hat{\chi}_{2}^{+}} = 0.205$	0.0	5			m(f_1^*)=0 m(f_1^*)-m(f_1^*)=5 GeV	1403 529 4, 1806 022 93 ATLAS-CONF-2019-014
	$\hat{\chi}_{1}^{*}\hat{\chi}_{1}^{*}$ via WW	2 e.µ	E_T^{rais}	139	\hat{X}_{1}^{\dagger}	0.42				m(t ⁰ ₁)=0	19/08.08/21/5
~ 5	$\hat{\chi}_1^* \hat{\chi}_2^*$ via Wh $\hat{\chi}_1^* \hat{\chi}_2^*$ via E in	0-1 e.µ 2 b	ν ² γ E ^{rat} _T	" 139 " 139	𝔅[*] ₁ 𝔅[*] Forbidden		0.74			m({2)=70 GeV	ATLAS-CONF-2019-019, 1909-09226
M leg	20 2 + + + + + + + + + + + + + + + + + +	21	Eni	139	1 (ttkl) 0.160.3	0.12-0.39	1.0			$m(r,s) = 0.5(m(r_1)+m(r_1))$ $m(r_1^{B})=0$	ATLAS-CONF-2019-018
0	$\tilde{t}_{L,R} \tilde{t}_{L,R}, \tilde{t} \rightarrow t \tilde{\chi}_1^0$	2 <i>ε.μ</i> 0 2 <i>ε.μ</i> 2	ots E_T^{ai} 1 E_T^{ai}	139 139	2 0.256		0.7			m(l)=0 m(l)-m(l)=10 GeV	ATLAS-CONF-2019-008 ATLAS-CONF-2019-014
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/2\tilde{G}$	$\begin{array}{ccc} 0 \ e, \mu & \geq \\ 4 \ e, \mu & 0 \end{array}$	$3 b = E_T^{rais}$ $ats = E_T^{rais}$	36.1 36.1	B 0.13-0.23 H 0.3		0.29-0.88			$BR(\hat{t}_1^0 \rightarrow hG) = 1$ $BR(\hat{t}_1^0 \rightarrow ZG) = 1$	1806.04030 1804.03602
lived	$Direct \widehat{\mathcal{X}}_1^+ \widehat{\mathcal{X}}_1^- prod., long-lived \widehat{\mathcal{X}}_1^+$	Disapp. trk 1	jet E _T	36.1	x ⁺ x ⁺ ₁ 0.15	0.46				Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
arb	Stable g R-hadron	Mu	ltiple	36.1	ŧ				2.0		19 02 0 16 36 1 80 8 0 40 95
20	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qg \tilde{\ell}_1^0$	Mu	ltiple	36.1	$\tilde{g} = [r(\tilde{g}) \equiv 10 \text{ ns}, 0.2 \text{ ns}]$				2.05 2.4	m ($\tilde{t}_1^{\rm E}$)=1.00 Ge V	1710.04001,1808.04095
	LFV $p p \rightarrow \tilde{r}_{\tau} + X, \tilde{r}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	ерле т.рат		3.2	ÿ,				1.9	$\lambda_{3.11} = 0.11, \lambda_{1.32/101/200} = 0.07$	1607.08079
	$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{r}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell_{YY}$	4 e.μ 0	$ets = E_T^{call}$	^a 36.1	$\hat{X}_{1}^{\pm} \hat{X}_{2}^{\pm} = [\lambda_{121} \neq 0, \lambda_{122} \neq 0]$		0.82	1.33		m (2)=100 GeV	1804.0380.2
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$	4-5 larg	ge-R jets tiple	36.1	# [m(K)=200 GeV 1100 GeV]			1.3	1.9	Large Jr.	1804.03568
PPV	0 -0	inc.	hiple.	30.1	8 (15 -20 d to 2)		1.0		2.0	m((1))200 Carlo Bino-Ilice	AILAS-GONF-2018-003
	$H, t \rightarrow U_1^*, \chi_1^* \rightarrow tbx$	2 jate	1000 1 + 2 h	35.1	g (a b)	0.55	1.0	5		m(21)=200 GeV, bino-like	AFLAS-GONF-2018-003 1710 07171
	$\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow q\ell$	2 ε.μ 2 ε.μ 2 1 μ 1	2 h SV	36.1 136	\tilde{t}_1 \tilde{t}_2 [1e-10 < λ'_{211} <1e-8, 3e-10 < λ'_{211}	<30-9]	1.0	0.4-1.45	1.6	BR(/1→b c/b µ)>20% BR(/1→gµ)=100%, cos0,=1	1710.05544 ATLAS-CONF-2019-006
									_		
*Only	a selection of the quailable man	limite on new	etatee or	4	0-1			1		Maga angle (Te)/	,
chily i	a selection of the available mass	nine are based	states of		0					mass scale [lev]	

example: SUSY

phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

fuelled by Quantum Mechanics

Intensity frontier

Indirect searches: fuelled by Quantum Mechanics

May access to NP scales well beyond collision energy !

LHC – explore both energy and intensity frontiers

Beam intensity: high luminosity

Physics@LHC | nuno@cern.ch