LIP Lisbon Seminar Lisbon, 14 December 2023

The liquid scintillator phase of SNO+: current status and future prospects

Valentina Lozza for the SNO+ Collaboration FCT Para a Ciência a Tecnologia

 Multi-purpose neutrino experiment with the primary goal to search for the neutrinoless double-beta decay of ¹³⁰Te.

JINST 16 (2021) 08, P08059

SNG

- Multi-purpose neutrino experiment with the primary goal to search for the neutrinoless double-beta decay of ¹³⁰Te.
- Three target's materials:
 - > 905 t of *ultra-pure water* (2017-2019);
 - ~780 t of high purity liquid scintillator +
 2.2 g/L PPO +bisMSB (2022-2024);
 - ▶ 3.9 t ^{nat}Te-loaded scintillator (2024).

SNQ

- Multi-purpose neutrino experiment with the primary goal to search for the neutrinoless double-beta decay of ¹³⁰Te.
- Three target's materials:
 - ▶ 905 t of *ultra-pure water* (2017-2019);
 - ~780 t of high purity liquid scintillator +
 2.2 g/L PPO +bisMSB (2022-2024);
 - ▶ 3.9 t ^{nat}Te-loaded scintillator (2024).
- Several background reduction layers:
 - 7 kt of high-purity water shield;
 - N₂ Cover Gas blanket across the entire detector;
 - Radon-impermeable plastic covering the cavity walls.

- Multi-purpose neutrino experiment with the primary goal to search for the neutrinoless double-beta decay of ¹³⁰Te.
- Three target's materials:
 - ▶ 905 t of *ultra-pure water* (2017-2019);
 - ~780 t of high purity liquid scintillator +
 2.2 g/L PPO +bisMSB (2022-2024);
 - ▶ 3.9 t ^{nat}Te-loaded scintillator (2024).
- Material purification:
 - 4 purification plants UG for water, scintillator and Te;
 - Possibility to recirculate and repurify water and scintillator;
 - Extensive QA campaigns before, during and after filling/loading.

TeDiol purification plant

SNQ

TeA purification plant

6

SNO+ PHYSICS (WATER, LS, TELS)

0/1 = not doable/doable inwater, LS, TeLS phase

Solar neutrinos (1,1,1)

Geo anti-neutrinos (0, 1, 1)

Reactor anti-neutrinos (1,1,1)

Rare decays and interactions (1,1,1)

Supernovae neutrinos (1, 1, 1)

TOWARDS THE SCINTILLATOR PHASE

 T_e [MeV]

- Nucleon decay modes into invisible channels
- Solar neutrinos
- Reactor anti-neutrinos
 - * Efficiency for triggering on a neutron: (49.08 ± 0.39)% at center *Phys.Rev.C* 102, 014002

Inverse Beta Decay (IBD) reaction

- Nucleon decay modes into invisible channels
- Solar neutrinos
- Reactor anti-neutrinos
 - Efficiency for triggering on a neutron: (49.08 ± 0.39)% at center Phys.Rev.C 102, 014002
 - * First measurement of reactor anti-neutrinos using pure

water Phys.Rev.Lett 130, 091801

PRL Editor's Choice APS Physics Magazine Highlight

Flux ~ 20% of KamLAND, but baseline between reactors and SNO+ gives a unique spectral shape distortion

SNO+ EXTERNAL BACKGROUNDS

Input for future phases

* Gammas from ²³²Th and ²³⁸U from detector components such as the acrylic vessel, the support ropes, the PMTs.

 $\boldsymbol{\ast}$ An early measurement during the water phase allows to use a directional cut ($\boldsymbol{u}.\boldsymbol{R})$ and separate the various components

• With the exception of potential Rn ingresses in the water shield, these background sources are not expected to change towards SNO+ phases

SNQ

SNO+ EXTERNAL BACKGROUNDS

Input for future phases

* Gammas from ²³²Th and ²³⁸U from detector components such as the acrylic vessel, the support ropes, the PMTs.

 $\boldsymbol{\ast}$ An early measurement during the water phase allows to use a directional cut ($\boldsymbol{u}.\boldsymbol{R})$ and separate the various components

• With the exception of potential Rn ingresses in the water shield, these background sources are not expected to change towards SNO+ phases

SNQ

THE SCINTILLATOR PHASE

* Solar neutrinos with 11.2 kt-day during partial fill = PoS-PANIC2021-274

Solar neutrinos with 11.2 kt-day during partial fill = PoS-PANIC2021-274

Background	Expected Counts in Partial Fill ROI
Internal Water	1.8 §
* PFA Tube ²¹⁴ BiPo	2.9 §
Externals	2.5
(α, n)	0
Th Chain (Scint)	0.1
U Chain (Scint)	0.3
$^{8}\mathrm{B}\ \mathrm{\nu ES}$	0.5
Total Backgrounds	8.0

* tube used to remove water from the detector § not relevant for the full fill phase

- Solar neutrinos with 11.2 kt-day during partial fill = PoS-PANIC2021-274
- * Preparation for the double-beta decay phase: target-out measurement

Partial fill:

* Expected 8 events, seen 2

- * Investigation of mitigation strategies for solar neutrinos: Directionality of ⁸B
- * Very promising results for the 0.6 g/L PPO scintillator:
 - Determined by fitting prompt timing profiles to combined Cherenkov-scintillation 2D PDFs

- * Investigation of mitigation strategies for solar neutrinos: Directionality of ⁸B
- * Very promising results for the 0.6 g/L PPO scintillator:
 - Determined by fitting prompt timing profiles to combined Cherenkov-scintillation 2D PDFs
 - Event-by-event direction reconstruction compared to Borexino Correlated and Integrated Directionality
 - First time in liquid scintillation experiment

Major Outcomes

* Preparation for the double-beta decay phase: background and target-out measurement

²³⁸U via ²¹⁴BiPo

Coincidence analysis in space and time

Major Outcomes

* Preparation for the double-beta decay phase: background and target-out measurement

²³⁸U via ²¹⁴BiPo

Major Outcomes

Preparation for the double-beta decay phase: background and target-out measurement

²³⁸U via ²¹⁴BiPo

2. Bi En. window

Major Outcomes

* Preparation for the double-beta decay phase: background and target-out measurement

Major Outcomes

* Preparation for the double-beta decay phase: background and target-out measurement

²³⁸U via ²¹⁴BiPo

 $^{238}\text{U} = (5.3 \pm 0.1)10^{-17} \text{ g/g}$

Below DBD-phase requirements!

Major Outcomes

* Preparation for the double-beta decay phase: background and target-out measurement

²³²Th via ²¹²BiPo

 232 Th = (5.7±0.3)10⁻¹⁷ g/g

Below DBD-phase requirements!

SNO+ REACTOR ANTI-NEUTRINOS

Why?

* Tension between the two types of experiments that have measured Δm_{21}^2

- KamLAND = $\Delta m_{21}^2 = 7.53^{+0.18}_{-0.18} \times 10^{-5} \,\mathrm{eV}^2$
- Solar = $\Delta m_{21}^2 = 4.8^{+1.3}_{-0.6} \times 10^{-5} \text{ eV}^2$
- Another reactor anti-neutrinos oscillation measurement would help

de Salas, et. al. J. High Energy Phys. 2021, 71 (2021)

SNQ

Expect ~100 reactor anti-neutrino interactions per year

- -60% of reactor anti-neutrino flux comes from 3 Canadian reactors
 - characteristic structure of the oscillated spectrum

Expect ~100 reactor anti-neutrino interactions per year
 ~60% of reactor anti-neutrino flux comes from 3 Canadian reactors

Major source of alphas is ²¹⁰Po
 Highly reduced (~3x) ²¹⁰Po background from partial fill to the 2.2 g/L full fill phase

SNO+ REACTOR ANTI-NEUTRINOS

Major Outcomes

- Expect ~100 reactor anti-neutrino interactions per year
 ~60% of reactor anti-neutrino flux comes from 3 Canadian reactors
- * Major source of alphas is ²¹⁰Po

*Highly reduced (~3x) ²¹⁰Po background from partial fill to the 2.2 g/L full fill phase

SNQ

SNO+ CLASSIFIERS

Major Outcomes

Expect ~100 reactor anti-neutrino interactions per year

→~60% of reactor anti-neutrino flux comes from 3 Canadian reactors

* Major source of alphas is ²¹⁰Po

Highly reduced (~3x) ²¹⁰Po background from partial fill to the 2.2 g/L full fill phase

* Classifiers are being developed to separate signal from background

Good outcome in the partial fill phase

Prompt events below 3.5 MeV in partial fill geometry

Why?

- Expect ~25 geo anti-neutrino interactions per year
- * SNO+ will make first measurement of geo anti-neutrinos in North America
 - Constrain geological models

Adv. High Energy Phys. 2012 (2012) 235686

SNO+ ANTI-NEUTRINOS

Major Outcomes

* Preliminary study in SNO+ within a 5.7 m Fiducial Volume

- Finalising optics and classifiers
- * Sensitivity similar to KamLand (±0.18 10-5 eV²) expected within few years
 - not affected by Te loading

Reactor IBD oscillated using: * $\Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}^2$ * $\sin^2(\theta_{12}) = 0.307$

* Preliminary study in SNO+ within 80.9 days of data

- Expected to double the statistics
- * Major background for high energy neutrinos is ²⁰⁸Tl (²³²Th-chain).
 - Multi-site analysis under development for signal/background discrimination

Bayesian 1 σ Credible Interval: $heta_{12}=36.4^{\circ+8.0^\circ}_{-7.9^\circ}$

Current global fit value by NuFit 5.2 [3]: $heta_{12}=33.41^{\circ+0.75^\circ}_{-0.72^\circ}$

Results statistically-limited.

BEYOND THE SCINTILLATOR PHASE

Quick overview:

Happens in ~35 isotopes Decay scale is of the order of 10²⁰ yrs

OVBB THEORY

Quick overview:

OVBB Experiment

Quick overview:

Are neutrinos their own antiparticles? Is lepton number is violated? What is the absolute value of the mass of neutrinos? Why the Universe contains more matter than antimatter?

Results have impact across research areas

Neutrino physics Standard Model of particle physics Cosmology

OVBB STATE OF THE ART

SNG

M. Agostini, Neutrinoless $\beta\beta$ Decay - Status & Prospects XX International Workshop on Neutrino Telescopes, Venice

OVBB WITH SNO+

Major Advantages of Te

- No need for enrichment
- ✤ Long 2vßß half-life (7.9x10²⁰ yrs)
- * High Q-value of 2.5 MeV

Major Advantages of SNO+

- * Large size allows rejection of external backgrounds
- * Fast timing allows rejection of U and Th chain background (+ alpha,n)
- High light yield for good resolution = targeting 460 PMT hits/MeV
- * Target-out measurements before and while adding Te

Samples will be collected for off-site ICP-MS analysis
 (U/Th)

50

 $(R/R_{AV})^3$

Valentii

LIP Seminar, 14 Dec. '23

TeA cooling UG since 2015

PROJECTIONS

SUMMARY

- SNO+ has successfully completed its scintillator loading and is taking data with
 2.2 g/L PPO as of April 2022
- Initial measurements show radioactive backgrounds at or below the targeted values
- Many exciting physics publications are expected in the very near future!

LIP Coimbra LIP Lisboa

SNOLAB TRIUMF University of Alberta Queen's University Laurentian University

TU Dresden

UNAM

Boston University BNL University of California Berkeley LBNL University of Chicago University of Pennsylvania UC Davis

Oxford University Kings College London University of Liverpool University of Sussex University of Lancaster

Shandong University

Valentina Lozza, LIP Lisboa

for your attention

Thank you

Boston University BNL University of California Berkeley LBNL University of Chicago University of Pennsylvania UC Davis

Oxford University Kings College London University of Liverpool University of Sussex University of Lancaster

Shandong University

Valentina Lozza, LIP Lisboa

60

- Increasing the amount of isotope increases the signal
 - ⁸B-nu solar background (main) remains the same
 - Improved loading scheme maintains acceptable light yield despite increased absorption
 - Samples with several % loading have been stable on timescales of years.
 - Incremental cost ~\$2M / tonne Te

