# The Pierre Auger Observatory Leading the Astroparticle Physics field into a Golden Era





LIP seminar, Lisbon, October 19th 2023

Ruben Conceição









## Ultra High Energy Cosmic Rays







## Pierre Auger Observatory



Area: 3000 km<sup>2</sup>

Located in the Pampa Amarilla, Mendoza, Argentina Altitude: 1400 m a.s.l.







## Pierre Auger Collaboration

Argentina Australia Belgium Brazil Colombia Czech Republic France Germany Italy Mexico Netherlands Poland Portugal Romania Slovenia Spain USA



International collaboration of 17 Countries and ~ 400 scientists







## Pierre Auger Observatory



- 4 Fluorescence Detectors (FD)
- 6 x 4 Fluorescence Telescopes



- 1600 Surface Detectors (SD) Stations
- SD stations spaced by 1.5 km
- Covering an area of 3000 km<sup>2</sup>





## Surface detector





### WCD + Fluorescence Detector



### Pierre Auger Observatory (Low energy extensions)





### $\diamond$ **HEAT**

♦ 3 additional FD telescopes with a high elevation FoV 30° - 60°,  $E > 10^{17} \, {\rm eV}$ 

- ♦ Infill Denser array
  - ♦ 433 m grid with 19 stations
  - $\Rightarrow$  750 m grid with 61 stations
- AMIGA Buried scintillators (muon detectors)
  - ♦ 19 (61) stations in 433 (750) m array,  $10^{16.5} < E/eV < 10^{19}$
  - $\Rightarrow$  30 (60) m<sup>2</sup> scintillator modules
  - ♦ 2.3 m below ground

### Auger Engineering Radio Array (AREA)

♦ 153 antennas in 17 km<sup>2</sup>,  $E > 4 \times 10^{18} \text{ eV}$ 









# Ultra High Energy Cosmic Rays







### Fluorescence Detector

- Quasi-calorimetric energy measurement
- ♦ ~ 15% duty cycle

### **Surface Detector**

Sensitive to both e.m. and muonic shower components





10

- ♦ Calibration of SD with FD ♦ FD provides a quasi-calorimetric energy m
- Improve geometry reconstruction ♦ For hybrid events
- Better assess/control systematic uncer
- Different insights of the shower Access different shower components ♦ Test shower consistency

## Hybrid technique



Ruben Conceição

11

Ultra High Energy Cosmic Rays What have we learned so far?









## Arrival directions: large scale



Ruben Conceição

Science 357 (2017) no.6537, 1266-1270







## Arrival directions: large scale



Rayleigh analysis: update of Science 315 (2017) 1266







## Arrival directions: intermediate scale



 $\diamond$  The most significant excess at Cen A  $4\sigma$  Several likelihood tests for correction of arrival direction with astrophysical catalogs
  $\diamond$  Most significant signal at 3.8 $\sigma$  for Star Burst Galaxies catalog











## Neutral particles searches

### Photons





### NeutrInos



### No UHE photons or neutrino have been observed yet

![](_page_16_Picture_10.jpeg)

![](_page_16_Picture_11.jpeg)

## Composition fits to X<sub>max</sub>

![](_page_17_Figure_1.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_17_Figure_3.jpeg)

### The primary **composition** goes from **light to heavier** as its energy increases

![](_page_17_Picture_7.jpeg)

![](_page_17_Picture_8.jpeg)

## Mass composition enhanced anisotropy

![](_page_18_Figure_1.jpeg)

 $\Rightarrow$  Heavier composition from the galactic plane ( < 4 $\sigma$ )  $\diamond$  Combined spectrum + composition fit suggest an acceleration mechanism  $\propto A$ 

![](_page_18_Picture_6.jpeg)

![](_page_18_Picture_7.jpeg)

## Exploration of inclined showers

- $\diamond$  Muons  $\rightarrow$  Assess Hadronic interaction models
- ♦ Data selection
  - ♦ Zenith angles [62°; 80°]
  - $* E > 4 \times 10^{18} eV$

![](_page_19_Figure_5.jpeg)

 $\diamond$  Inclined shower  $\rightarrow$  Muons

![](_page_19_Picture_7.jpeg)

### Energy given by the Fluorescence Detector

![](_page_19_Figure_10.jpeg)

 $\rho_{\mu}(\text{data}) = N_{19} \cdot \rho_{\mu}(\text{QGSJETII03}, p, E = 10^{19} eV, \theta)$ 

$$R_{\mu} = \frac{N_{\mu}^{data}}{N_{\mu,19}^{MC}}$$

![](_page_19_Picture_14.jpeg)

![](_page_19_Picture_15.jpeg)

## Measurement of the EAS muon content

- Done using hybrid inclined showers
- ♦ Perform a likelihood fit including all reconstruction uncertainties (detector, energy...)
- Extraction of the two first momenta of the muon distribution as a function of the primary energy
   A second sec

![](_page_20_Picture_5.jpeg)

Sensitive to the EAS muon number -  $R_{\mu}$ 

![](_page_20_Figure_7.jpeg)

Phys.Rev.Lett. 126 (2021) 15, 152002

![](_page_20_Picture_12.jpeg)

Sensitive to the EAS calorimetric energy - E

E / eV

![](_page_20_Picture_16.jpeg)

![](_page_20_Picture_17.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_21_Picture_8.jpeg)

# The EAS muon puzzle @ Auger

Eur.Phys.J.C 80 (2020) 8, 751

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_3.jpeg)

Phys.Rev.Lett. 126 (2021) 15, 152002

![](_page_22_Picture_6.jpeg)

![](_page_22_Picture_7.jpeg)

![](_page_22_Picture_8.jpeg)

## EAS muon fluctuations

### Phys.Rev.Lett. 126 (2021) 15, 152002

![](_page_23_Figure_2.jpeg)

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X<sub>max</sub> data

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

## EAS muon fluctuations

### Phys.Rev.Lett. 126 (2021) 15, 152002

![](_page_24_Figure_2.jpeg)

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X<sub>max</sub> data L. Cazon, RC, F. Riehn, PLB 784 (2018) 68-76

![](_page_24_Figure_6.jpeg)

 $\alpha_1$  is the fraction of energy going into the hadronic sector in the first interaction

$$\sigma(\alpha_1) \rightarrow 70 \% \sigma(N_\mu)$$

![](_page_24_Picture_9.jpeg)

![](_page_24_Picture_10.jpeg)

## EAS muon fluctuations

### Phys.Rev.Lett. 126 (2021) 15, 152002

![](_page_25_Figure_2.jpeg)

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X<sub>max</sub> data

L. Cazon, RC, F. Riehn, PLB 784 (2018) 68-76

![](_page_25_Figure_6.jpeg)

 $\alpha_1$  is the fraction of energy going into the hadronic sector in the first interaction

$$\sigma(\alpha_1) \rightarrow 70 \% \sigma(N_\mu)$$

### Suggestion that muon deficit might be related with description of low energy interactions

![](_page_25_Picture_11.jpeg)

![](_page_25_Picture_12.jpeg)

## The RPC hodoscope at the Auger test WCD

![](_page_26_Figure_1.jpeg)

Resistive Plate Chambers (RPC) - LIP Coimbra: position-sensitive detectors Trigger on atmospheric muons and study the WCD response for selected trajectories

![](_page_26_Picture_4.jpeg)

![](_page_26_Figure_6.jpeg)

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_8.jpeg)

### Shower size in Auger is given in **VEM** unit

- The reference is the light detected by the PMTs given the passage a vertical centred muon
- The ratio omnidirectional/vertical remains the same for a station with more than **10 years** of operation, i.e., no ageing effects on the calibration

Pierre Auger coll., JINST 15 (2020) 09, P09002

![](_page_27_Figure_6.jpeg)

| Conversion factor                   | PMT average   | PMT sum       |
|-------------------------------------|---------------|---------------|
| $Q_{VEM}^{peak}/Q_{VEM}$            | $1.00\pm0.02$ | $1.09\pm0.01$ |
| I <sup>peak</sup> /I <sub>VEM</sub> | $0.92\pm0.03$ |               |

![](_page_27_Figure_8.jpeg)

![](_page_27_Picture_9.jpeg)

![](_page_27_Picture_10.jpeg)

## Results: inclined muons

- WCD signal response for atmospheric muons with inclinations of  $\theta \in [20^\circ; 50^\circ]$
- at the percent level

![](_page_28_Figure_3.jpeg)

Pierre Auger coll., JINST 15 (2020) 09, P09002

![](_page_28_Picture_7.jpeg)

![](_page_28_Picture_8.jpeg)

## Many other EAS measurements...

Phys.Rev.Lett. 109 (2012) 062002

JCAP 1903 (2019) no.03, 018

![](_page_29_Figure_3.jpeg)

Measurement of the proton-air crosssection at E~10<sup>18</sup> eV Measurement of average e.m. longitudinal profile shape Phys.Rev.D 96 (2017) 12, 122003

PoS ICRC (2021) 310

![](_page_29_Figure_9.jpeg)

Measurement of time profiles of the signals recorded with the water-Cherenkov detectors

Simultaneous fits to the X<sub>max</sub> (FD) and the ground signal (SD)

![](_page_29_Picture_12.jpeg)

![](_page_29_Picture_13.jpeg)

# Pierre Auger Observatory The future of the observatory

![](_page_30_Picture_1.jpeg)

# Auger Prime detectors

### New electronics (UUB) and Scintillators(SSD)

![](_page_31_Picture_2.jpeg)

### **Underground Muon Detector (UMD)**

Auger Phase I data taking from 2004 on (from 2008 with the full array) to 2021

**Auger Phase II** data taking from 2024 to 2035

Ruben Conceição

![](_page_31_Figure_7.jpeg)

### High dynamic range PMTs

![](_page_31_Picture_9.jpeg)

![](_page_31_Picture_10.jpeg)

![](_page_31_Picture_11.jpeg)

![](_page_31_Picture_12.jpeg)

![](_page_31_Picture_13.jpeg)

## AugerPrime timeline

![](_page_32_Figure_1.jpeg)

![](_page_32_Picture_2.jpeg)

![](_page_32_Picture_4.jpeg)

**Status** 21 September 2023

### **Stations w/ UUB**

Stations w/ UUB + SSD

Stations w/ UUB + SSD without PMT

**RD** antenna

No access

![](_page_32_Picture_12.jpeg)

![](_page_32_Picture_13.jpeg)

## AugerPrime: A Wealth of Information

![](_page_33_Picture_2.jpeg)

![](_page_33_Figure_4.jpeg)

Ruben Conceição

### Auger multi-hybrid event

![](_page_33_Picture_7.jpeg)

![](_page_33_Picture_8.jpeg)

![](_page_33_Picture_9.jpeg)

![](_page_33_Picture_10.jpeg)

## More events than ever...

![](_page_34_Picture_1.jpeg)

Energy scale

noton Limits

Vertical **Events** 

![](_page_34_Picture_4.jpeg)

![](_page_34_Figure_6.jpeg)

Horizontal Events

![](_page_34_Picture_8.jpeg)

![](_page_34_Picture_9.jpeg)

### Particles at the ground

Energy scale

Ruben Conceição

![](_page_34_Picture_13.jpeg)

-4

-8

-12

![](_page_34_Picture_14.jpeg)

![](_page_34_Picture_15.jpeg)

# The dawn of Machine Learning @ Auger

### Extraction of Xmax from the SD ground signal

### Pierre Auger coll., JINST 16 (2021) 07, P07019

![](_page_35_Figure_3.jpeg)

Resolutions comparable to those achieved with hybrid (FD+SD) events but factor nearly 7 of more events

Algorithms highly dependent of simulations and might be picking up unknown less controlled shower characteristics

![](_page_35_Picture_8.jpeg)

![](_page_35_Picture_9.jpeg)

# The dawn of Machine Learning @ Auger

### Extraction of Xmax from the SD ground signal

### Pierre Auger coll., JINST 16 (2021) 07, P07019

![](_page_36_Figure_3.jpeg)

Resolutions comparable to those achieved with hybrid (FD+SD) events but factor nearly 7 of more events

Algorithms highly dependent of simulations and might be picking up unknown less controlled shower characteristics

![](_page_36_Picture_8.jpeg)

![](_page_36_Picture_9.jpeg)

# The dawn of Machine Learning @ Auger

### Pierre Auger coll., JINST 16 (2021) 07, P07019

![](_page_37_Figure_3.jpeg)

 $\diamond$  It is vital to create strategies to achieve self consistent solutions  $\Rightarrow$  **RPC hodoscope** 

 Resolutions comparable to those achieved with hybrid (FD+SD) events but factor nearly 7 of more events
 Algorithms highly dependent of simulations and might be picking up unknown less controlled shower characteristics

![](_page_37_Picture_8.jpeg)

![](_page_37_Picture_9.jpeg)

## Back to the calibration with the RPC hodoscope

one of the Auger Prime detectors

![](_page_38_Picture_2.jpeg)

![](_page_38_Figure_4.jpeg)

The data acquisition system was also upgraded to cope with the new electronics board of the WCD and have a more robust/faster acquisition system

![](_page_38_Figure_6.jpeg)

![](_page_38_Picture_7.jpeg)

![](_page_38_Picture_8.jpeg)

![](_page_38_Picture_9.jpeg)

## Back to the calibration with the RPC hodoscope

one of the Auger Prime detectors

![](_page_39_Picture_2.jpeg)

![](_page_39_Figure_4.jpeg)

The data acquisition system was also upgraded to cope with the new electronics board of the WCD and have a more robust/faster acquisition system

![](_page_39_Figure_6.jpeg)

![](_page_39_Picture_7.jpeg)

![](_page_39_Picture_8.jpeg)

### (A plethora of measurements to fully understand the shower)

![](_page_40_Figure_2.jpeg)

### Multi-hybrid shower events

![](_page_40_Picture_7.jpeg)

41

# Summary

- searches, geo-cosmo physics...)
- out scenarios
- provide a consistent description of the measured showers
- measurements (Auger Phase II) will be available to

![](_page_41_Picture_5.jpeg)

![](_page_41_Picture_8.jpeg)

![](_page_41_Picture_9.jpeg)

![](_page_41_Picture_10.jpeg)

![](_page_41_Picture_11.jpeg)

![](_page_41_Picture_12.jpeg)

### Astroparticle Physics A unique opportunity to explore the extreme energy Universe

![](_page_42_Picture_1.jpeg)

![](_page_42_Figure_2.jpeg)

1011

1012

**10**<sup>13</sup>

ruben@lip.pt

![](_page_42_Picture_11.jpeg)

## Acknowledgements

### Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

![](_page_43_Picture_2.jpeg)

![](_page_43_Picture_4.jpeg)

### REPÚBLICA PORTUGUESA

![](_page_43_Picture_6.jpeg)

![](_page_43_Picture_8.jpeg)

![](_page_43_Picture_9.jpeg)