Thermalization and Bose-Einstein
condensation in ultracold atoms

Georg Wolschin
Heidelberg University

m Institut fur Theoretische Physik
ﬁfﬂft\ - Philosophenweg 16
D-69120 Heidelberg

U_Coimbra_05/2024




Topics

Introduction

An analytical model for the thermalization of bosons and fermions
2.1 Derivation of the nonlinear boson diffusion equation (NBDE)
2.2 Exact solution of the nonlinear equation

Application to ultracold atoms and BEC formation

3.1 Thermalization via elastic scattering
3.2 Time-dependent condensate formation in Na-23 and Rb-87
3.3 Comparison with deep-quench Cambridge data for K-39

Epilog: Thermalization of gluons in relativistic heavy-ion collisions

Summary and Conclusion

U_Coimbra_05/2024



1. Introduction: Cold quantum gases and BEC formation

Time evolution of a 8’Rb condensate
© NASA CAL/ISS

1924 Bose, Einstein

1995 BEC: 87Rb (NIST Boulder),
23Na (MIT)

1998 Time dependence of BEC
formation (MIT)

» The thermal cloud from which the Bose-Einstein
condensate emerges equilibrates subsequent to

evaporative cooling

» The time-dependent approach to the equilibrium value of the
condensate fraction can be measured, and will be accounted
for in a nonequilibrium-statistical model

» The equilibrium condensate fraction depends on the
initial temperature T;, the final temperature T;, and the initial

chemical potential
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H.-J. Miesner et al., Science A 499, 1005 (1998)



2. An analytical model for thermalization

The N-body density operator obeys the many-body equation

§ 2P0 — (it (1), e ()] + K (1)

with the Hartree-Fock mean-field part Hyg(t), and the collision term Ky(t), which
causes the system to thermalize due to two-body collisions. For cold atoms, the

trap provides an external potential.

Reducing to the one-body level, the diagonal elements of the ensemble-averaged
one-body density operator become

(ﬁl(t))a’a = n(EQ,t) = na(evt)

with the single-particle occupation numbers n,* for bosons, n,- for fermions

The collision term can be written in form of a quantum Boltzmann equation
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2.1 Derivation of the nonlinear diffusion equation

Quantum Boltzmann collision term for bosons/ fermions, ergodic approximation

8”1: - 2
ot Z (Viag4) G (€1 + €2, €3 + €4) X
€2,€3,€4

[(1 + nl)(l + ng) ns g — (1 + ng)(l + 714) ni 77,2}

(V12234> second moment of the interaction
G (€1 + €2,€3 + €4) energy-conserving function

— m0(€1 + €2 — €3 — €4) in infinite systems

J

The Bose-Einstein/ Fermi-Dirac distributions are stationary solutions

1
+ —
«al€) = emmT 1

U_Coimbra_05/2024

n
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Write the collision term in form of a Master equation (ME) with gain- and loss term

onT
8151 — (1 + nl) Z W4j:—>1 ng — Ny Z le:—>4(1 + 714)

€4 €4

with the transition probability ( ¥#7;_,4 accordingly)

Wi:l(el, 64,t) = Z <V12234> G (61 + €2,€3 + 64) (1 + 712) ns

€2,€3

Introduce the density of states g; = g(g;); omit +
Wis1 = Wi, Wisa = Wiags

Wi = Wy = Wg(ea + €1), lea — €]

W is peaked at ¢, =¢, . Obtain an approximation to the ME through a Taylor

expansion of ng and g4n4 around ¢; = ¢, to second order.
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Introduce transport coefficients via moments of the transition probability (x=¢4-¢/)

1 > . d
D*(e,t) = 5 91/ WE (e, z) 2%dx; vE(er,t) = g5 1d—€1(ngi)
0

and arrive at the nonlinear partial differential equation for the distribution of
the occupation numbers nt =n* (e, t) =nT (617 t) =n

on* 9, oD 0?
5 = B [vn(lin)—l—na —I—@[Dn}.

Dissipative effects are expressed through the drift term -v(g’ t), diffusive
effects through the diffusion term D(e, t).

Nonlinear diffusion equation

In the limit of constant transport coefficients, the nonlinear diffusion equation
for the occupation-number distribution of bosons/ fermions becomes

+ 2
%:—v%[n(lin)]—kD@

G Wolschin, Physica A 499, 1 (2018); A 597, 127299 (2022); EPL 140, 40002 (2022)



The Bose-Einstein/Fermi-Dirac distributions n*., (¢) are stationary solutions
of this equation for constant D, v with the equilibrium temperature (fluctuation-dissipation relation)

T = —D/v with v < 0

Thermalization of cold atoms: Through elastic collisions, the nonlinear evolution
pushes a certain fraction of particles from the thermal cloud into the Bose-Einstein
condensate. The equilibration time depends on both transport coefficients, teq(D,V) «cD/v?

The nonlinear boson diffusion equation (NBDE) properly accounts for the
thermalization of bosonic atoms provided the boundary condition n (e=p < 0) > oo
at the the singularity is introduced.
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2.2 Exact solution of the nonlinear diffusion equation

For constant transport coefficients, the solution of the nonlinear diffusion equation
for bosons/fermions can be written as the logarithmic derivative

. 1 T . 1
n(e,t) = £T0. In Z(e, t) F 3= :tgdez F3

of the time-dependent partition function Z(e,t)

+o0
Z(e,t) = G(e,x,t) F(x)dzx,
which is an integral over Green’s function G (g, X, t) of the linear diffusion equation
0 02
[a — D@] G(e,x,t) = 0(e — ) d(t)

and an exponential function that contains the initial conditions; for bosons
1
F(x)=exp|—=— (x+20A;(x))]| .
(x) p{ 2D( i(x))

Here, Ai(x) = | ni(y) dy is the indefinite integral over the initial distribution n;.

(The integration constant drops out when taking the logarithmic derivative of the partition function.)
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For a solution without boundary conditions, Green'’s function Ggee(e, X; t) is a single Gaussian

1 (€ — x)?
Gtree(€, T, 1) = \/ﬁ exp [_4—1375]

Now, include boundary conditions for bosons at the singularity e = u, with y; < 0 for elastic
collisions as determined from particle-number conservation (u = O for inelastic collisions).

This requires a new Green’s function that equals zero at e = & aof
Gb(E, €x, t) — (;free(6 — MU, T, t) — Gfree(e — M, =T, t) )

and the time-dependent partition function becomes
+oo
Zp(e,t) = Gy(e,x,t) F(x + p) de
0
Then we have Zy(y, t) = 0 and lim,,n(e, t)== V t as needed. Moreover, the energy range is

restricted to € = .

60

GW, EPL 129, 40006 (2020)

To conserve particle number during the time evolution for elastic scatterings, a time-varying
chemical potential u(t) is introduced. Once u(t) reaches zero in the overoccupied case,
condensate formation starts. (Particle number is not conserved in the inelastic case with p = 0.)

U_Coimbra_05/2024 10



Exact solution of the NBDE for a quenched initial distribution

Time-dependent partition function

z =ibiew( -3 f (-1 (e“f”'[e‘““'“’f\f(e..r)—e“*‘“-*’Aé(en]+exp(("}—i‘*”‘)exp( D’) xS ) mste) -enp(5 ) auten) )

aT? 2T; 2T;
g—¢e+w
. e—pu+ 2Dtak> (e —-&+ 2Dtak) As(g 1) = erfc (—)
Ae,1) = erf | ——— ) —ef [ ———— VaDt
oLk e =e ( abr Vabr 4Dy
- 2T¢ T;
. Ak(e, 1) = erf "—_S’LZDM‘)_e.f(z”‘e’e““w’“‘) _ e—2u+e+mw
(e ) =e ( i ADr Ay(e, 1) = erfc AD;
Energy-derivative of the partition function

T;
& _ _ T. _ . aDr [ ayle—p) o k ay (u—e) A k .
—68.2’ V 4Dtexp( 2T ) E_o fl(=1) (a‘e [e Aj(e,1)+e As(e,1) ] +exp ( - e

k nooAn

o7, | %P Z—T:l) As(e,1) +exp (yz;fs) Ao, t)] )

N. Rasch and GW, Phys. Open 2, 100013 (2020)

Single-particle distribution function for bosonic atoms

n(e,t) = T; (9Z(s,t) 08) | Z(&,t) - 1/2

x /4
Z(e,t) = V4Dt exp (—%) Z (7]3) (_1)”C X kTi,Tf (€,1) The series terminates
f

k=0 for integer T,/T;




3. Application to ultracold atoms and BEC formation
3.1 Thermalization via elastic scattering

The nonlinear diffusion model is applied to the thermalization of bosonic ultracold atoms,
and Bose-Einstein condensate formation subsequent to evaporative cooling

Example: Evaporative cooling of atoms produces a highly nonequilibrium state at an initial
temperature of T; = 240 nK and w; = -8 nK, which thermalizes to attain a lower temperature

T¢ = 100 nK according to the NBDE time evolution. The parameter p(t) approaches zero at Tini
the initiation time ti,;, when condensate formation starts

20y — J'
[ \ ‘
A4
r A ‘i
15/ Q\b}
L 'o“‘b\ab 03\\
- SANNY T, = 240 nK
<

€ (nK)

--- analytical solutions of the NBDE
0 numerical results using Matlab A. Simon and GW, Physica A 573, 125930 (2021) Max. expansion cooff,



3.2 Time-dependent condensate formation in Na-23

The nonlinear diffusion model accounts for the time-dependent Bose-Einstein condensate
formation when particle-number conservation is considered in the NBDE

Example: Evaporative cooling of Na-23 atoms, producing a nonequilibrium state at an initial
temperature of T; = 876 nK as in the historical MIT experiment Science 279, 1005 (1998).

Time-dependent condensate formation with T; = 750 nK is compared with our model calculations:

A. Simon and G. Wolschin Physica A 573 (2021) 125930
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Fig. 7. Condensate fraction N (t)/N in an equilibrating Bose gas of 2*Na subsequent to fast evaporative cooling in a single step from T; = 876
nK to Tr = 750 nK as calculated from the analytical solution of the NBDE Eq. (13) with kmx = K = 5,10,20,40 in the series expansion
of the exact solution, cutoff energy ¢ = 2190 nK, pu; = —8 nK, and the density of states for a free Bose gas. The transport coefficients are
D = 3750 (nK)* ms~!, v =—5 nKms~'. The MIT data for the condensate fraction (crosses, no error bars) are from Ref. [8].
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Time-dependent condensate formation in Rb-87
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We report on a quantitative study of the growth process of ’Rb Bose-Einstein condensates. By
continuous evaporative cooling we directly control the thermal cloud from which the condensate grows.
We compare the experimental data with the results of a theoretical model based on quantum Kinetic
theory. We find quantitative agreement with theory for the situation of strong cooling, whereas in the
weak cooling regime a distinctly different behavior is found in the experiment.

Continuous evaporative cooling resulting in
BEC formation: Excellent time resolution.
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FIG. 1. Growth curve of a Bose-Einstein condensate for an
evaporation parameter y = 1.4. The lines are the results of the
numerical simulation of the growth for the starting conditions
N; = 4.4 X 10° and T; = 610 nK (solid) and N; = 4.2 X 10°
and 7; = 610 nK (dotted). Every data point is averaged over
three identical repetitions of the experiment with statistical errors
shown by the bars.
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3.3 Thermalization and condensate formation in K-39: Deep quench

The nonlinear diffusion model is best suited to account for the thermalization of bosonic ultracold atoms,
and Bose-Einstein condensate formation in case of a deep quench (instead of gradual evaporative cooling)

Example:

Deep quench in K-39 atoms, producing a highly nonequilibrium state at an initial
temperature of T; = 130 nK as in the Cambridge experiment Nature Phys. 17, 457 (2021).

Time-dependent condensate formation is measured for various scattering lengths, and
compared to our model calculations:

N |\ N ]

15; |
i remove 77%.of the atoms,
97.5% of thg energy

~

A. Kabelac and GW, Eur.Phys.J. D76, 178 (2022) e



Time-dependent condensate formation in K-39 vapour at various interaction energies

The nonlinear diffusion model can be applied to the time-dependent Bose-Einstein condensate formation.
Here, particle number is conserved following the deep quench:

Ni = Nin(t) + N (t) = [ n(e,t) g(e) de + N, (t) = Condensate fraction = Ng(t)/N; = 1- N (t)/N;
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ap = Bohr radius = 0.0529 nm
a = s-wave scattering length  3°K Data from J.A.P. Glidden et al., Nature Phys. 17, 457-461 (2021).  GW, EPL 140, 40002 (2022)



Table 1 Transport coefficients, initiation and equilibration times
for BEC formation in 3°K

(T = 130 nK, Tt = —D/v = 32.5 nK)

a(ass) D (nKz/ms) v(nK/ms)  7ipi (ms) 7eq (ms)

140 0.08 —0.00246 130 600
280 0.16 —0.00492 65 300
400 0.229 —0.00705 46 210

800 0.457 —0.01406 23 105
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4. Epilog: Thermalization in the initial stages of relativistic heavy-ion collisions

Fast local equilibration of gluons in the fireball (QGP)
towards the Bose-Einstein distribution (Global
thermodynamic equilibrium is usually not attained).
This is as prerequisite for subsequent hydrodynamic
expansion, cooling and hadronization.

Local equilibration of quarks in the
fragmentation sources towards the
Fermi-Dirac distribution

Spacetime diagram for the evolution of the QGP

Pre-equilibrium phase, 1< 1 fm/c;
typical interaction time = 5-8 fm/c

N\

© Boris Hippolyte, Univ. Strasbourg/CERN (2019)

beam
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Comparison with a numerical thermalization model for u=0, n;°=1
(NBDE solutions for inelastic collisions vs. Blaizot et al.)

100¢
, 100
- i
. L N 3N | = s
Y S E =g -
- F T T e -
(: ~.
0.04 e :
0.01 0.05 0.10 o o g .
p (GeV/c) p
) . ) . ] Numerical QCD-based calculations of the soit (IR} moces only
NBDE solutions: Time-dependent single- particle occupation-number at early times t=2 x 10™,8 x 107, 3 x 1073, 0.01 fm/c
distribution functions n(p,t)att=2x10"%,2x 10,2 x 1073, (with n%=1.0, T=690 MeV) from:
0.01, 0.04, 0.12, 0.4 and 2 fm/c (decreasing dash lengths). J.-P. Blaizot, J. Liao, Y. Mehtar-Tani, NPA 961, 37 (2017):

n®=1.0; T = 600 MeV (solid curve, BE-distribution) . , : L
D =1.2 GeV?/fm, v = -2 GeV/fm This numerical model in the small-angle approximation

agrees reasonably well with the analytical NBDE-approach
G. Wolschin, Physica A 597, 127299 (2022) in the IR 9



5. Summary and Conclusion

» From the quantum Boltzmann collision term, a nonlinear partial

differential equation for the time-dependent occupation-number distribution
in a finite Fermi/ Bose system is derived

» The nonlinear boson diffusion equation (NBDE) is solved analytically including
the boundary conditions at the singularity

» The solution accounts for the thermalization of ultracold atoms and time-dependent
Bose-Einstein condensate formation such as in K-39

0 The model can also be applied to the thermalization of quarks and gluons
in the initial stages of relativistic heavy-ion collisions, and other nonequilibrium
processes in physics.
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Thank you for your attention !
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