Medical Physics at LIP: PET with RPCs

Alberto Blanco

On behalf the RPC R&D group from LIP-Coimbra

- Positron Emission Tomography (PET).
- Resistive Plate Chambers (RPC) technology and RPC-PET concept.
- Small animal RPC-PET concept.
- Human brain RPC-PET concept.

Positron Emission Tomography. PET

Positron emission tomography (PET) is a **functional imaging technique** that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic process, and in other physiological activities.

High spatial resolution needed.

Epilepsy. PET-FDG.

- 30% of patients do not respond to pharmacological treatments.
- In cases of focal epilepsy, the therapeutic option is surgery.
- Surgery consists of a resection of the area of the brain responsible for the seizures

Normal brain metabolism

Patient with inconclusive lesion in MRI shows cortical dysplasia.

High spatial resolution needed.

Alzeimer. PET-FDG.

Alzheimer's patients show loss of metabolism in posterior regions resulting in cortical atrophy.

Process of neurodegeneration in brain metabolism in an Alzheimer's patient.

Evolution with time

Differential diagnosis. Different diseases present FDG hypo-metabolisms in different regions of the brain.

High spatial resolution needed.

Parkinson. PET-FDOPA.

1 Healthy volunteer

2 Parkinson's patient showing asymmetric loss of the right putamen and caudate preservation (striatum)

Capability to detect the crossing position (100 um) and time (100 ps) with high precision

Resistive Plate Chambers.

The basic idea for RPC-based TOF-PET

The converter-plate principle

Stacked RPCs

Use the electrode plates as a gamma converter, taking advantage of the natural layered construction of the RPCs.

Time resolution for 511 keV photons: (our routine lab-test tool) **90 ps** for 1 photon **300 ps FWHM** for the photon pair

A previous work on PET with gaseous detectors (21 lead plates + 20 MWPCs = 7% efficiency)

"The Rutherford Appleton Laboratory's Mark I Multiwire Proportional Counter Positron Camera" J.E. Bateman et al. NIM 225 (1984) 209-231

III BE SUMMIT, LIP presentation, Coimbra 8-09-2023

RPC-PET

rto Blanco

9

Blanco 2002

Disadvantages

- Certainly a much smaller efficiency... it is still to be seen if this is a fatal flaw.
- No energy resolution, but there is an <u>equivalent</u> energy sensitivity (more later). Detector scatter (vs. "misidentified fraction" in crystal blocks)

Advantages

Increasing system sensitivity

Inexpensive => large areas possible => large solid angle coverage Excellent timing => TOF-PET possible

Increasing position accuracy

Gaseous detectors routinely deliver 0.1 mm resolution Full 3D localization possible => no gross parallax error The very small gap minimizes intrinsic errors

Lowering costs

Applications can be also optimized for low cost at the expense of other characteristics

Total body Human PET

Small Animal / brain PET

Simulation: 0.51mm FWHM

Small animal PET

Aimed at **verifying** the concept and show the **viability** of a **sub-millimetric spatial resolution**.

16 stacked RPCs

Charge-sensitive electronics allowing interstrip position interpolation

(now enjoying a second life as an exhibition item)

2D measurement of the photon interaction point

III BE SUMMIT, LIP presentation, Coimbra 8-09-2023

System in action

Image spatial resolution

Filtered Back Projection FBP

~ 465 um FWHM

Maximum likelihood-expectation maximization with resolution modeling (ML-EM) ~ 305 um FWHM

III BE SUMMIT, LIP presentation, Coimbra 8-09-2023

Alberto Blanco

Almost 4PI coverage

Detector & readout

Preliminary resolution tests in simplified geometry but realistic readout

Two detectors with XY localization

Needle source, 0.2 mm int.

Planar (disk) source

[P.Martins et al., JINST 2014 + PhD thesys]

[P.Martins et al., JINST 2014 + PhD thesys]

- Joint reconstruction of the source in 2 positions separated by 1mm.
- ~130k LORs in 3.5M 25um voxels.
- Color maps: planar profiles including peak density point. -Isosufaces: 50% rel. activity
- Reconstructed activity profile across the black line shown in the upper left panel.
- Resolution ~0.4mm FWHM +background (Note: source is 0.2mm diam.)

2

Construction at LIP

Auxiliary coarse Z determination

All electrodes readout in parallel

24 charge channels/coordinate/head

Time readout (for trigger)

Resolution in final geometry (2 heads only, needle source)

III BE SUMMIT, LIP presentation, Coimbra 8-09-2023

Installed at ICNAS (UC)

Expected performance vs. other systems

III BE SUMMIT. LIP presentation. Coimbra 8-09-2023

Some interesting images of mice

Live heart transaxial sections with ¹⁸FDG <u>1 mm²</u>

Harderian glands and left striatum with ¹¹C-raclopride

Co-registration with MRI

More than 500 scans performed so far (2015 - 2022).

S. Chiquita, M. Ribeiro, J. Castelhano, F. Oliveira, J. Sereno, M. Batista, A. Abrunhosa, A.C. Rodrigues-Neves, R. Carecho, F. Baptista, C. Gomes, P.I. Moreira, A.F. Ambrosio, M. Castelo-Branco, **A longitudinal multimodal in vivo molecular imaging study of the 3xTg-AD mouse model shows progressive early hippocampal and taurine loss**, Human Molecular Genetics, 28 (2019) 2174-2188.

C. Lopes, I.L. Ferreira, C. Maranga, M. Beatriz, S.I. Mota, J. Sereno, J. Castelhano, A. Abrunhosa, F. Oliveira, M. De Rosa, M. Hayden, M.N. Laco, C. Januario, M.C. Branco, A.C. Rego, **Mitochondrial and redox modifications in early stages of Huntington's disease**, Redox Biology, 56 (2022).

RPC-PET brain scanner

 $30 \times 30 \times 30$ cm³ field of view Acceptance solid angle = 66% Installed at ICNAS Pharma

Motivation:

- Resolving the smaller brain structures, often involved in severe neurological disorders (e.g. Parkinson, Huntington, addictions)
- Better characterization of the lesions from strokes
- Improve the oncological therapeutic planning by better detection and characterization of tumors

Specific project goals:

- 1 best image resolution possible
- 2 modest sensitivity of 0.1 % (this is a demonstrator)
- 3 fit the budget and the schedule (2.5y)

Instrumentation overview

- a) Pulse generator
- b) Slow control main unit
- c) Auxiliary comparators for trigger
- d) DAQ system
- e) HV power supplies
- f) Timing amplifiers/comparators
- g) Charge amplifiers
- h) LV power supply
- i) Local slow control
- j) Gas system

DAQ system was developed by the TRB collaboration (<u>trb.gsi.de</u>)

All other hardware developed at LIP

Detector

5-gaps MRPC: 30 x 30 cm² active area Glass 0.33 mm, 0.35 mm gaps, ~4.5 mm thick

- a) Readout electrodes
- b) Cabling towards fast amplifers
- c) Cabling towards charge amplifiers
- d) RPCs (8 = 40 gaps total)
- e) Empty space for twice more RPCs
- f) Pulser cable

Front-end electronics (custom, discrete)

Timing amplifiers:

- 10 independent channels
- selectable polarity
- two-stage wideband amplification(2 x SPF5043Z => gain 60 @ 1GHz)
- comparator MAX9601 as 200 ns one-shot
- individual LVDS outputs
- wired OR output for trigger
- -noise floor ~20 uA at input (50 ohm)
- <=> 50 mV on the comparator

Charge amplifiers:

- 24 channels

- bipolar

- 50 mV/pC

- 20 us integration time

- readout by streaming ADCs
 - digital pulse proccessing

- two independent systems (1/crate = 1 head pair)
 - 8 x 48ch streaming ADCs
 - 8 x 1GbE links
 - central trigger processor
- switch for data aggregation into 2 x 10GbE links
- server for event building and storage (~2 h)
- acquisition rate limited only by the 1GbE links

Developed by the TRB collaboration (trb.qsi.de)

TRB3sc

- base module for numerous addon boards
- 1GbE link
- many firmware options
 - 48 ch 10 ps TDC
 - central trigger processor
 - digital pulse processing for ADCaddon

- etc.

- 48 ch 40 MHz streaming ADC

ADCaddon

Gas system

Very nice gas system:

- flow splitted equally between the 4 heads
- separate exit bubblers
- flow and humidity measurement in each bubbler
- temperature, etc.
- local RPI for control & measurement

3D event localization – in plane electronic contribution

Difficult to determine with photons because there is always a parallax effect on the emitted electrons

Cosmic ray test with 3 full planes (all systematics in)

3D event localization – 3D event localization – gap identification (depth of interaction)

Self-trigger image of a chamber with loose spacing lines and deficient pressing

Image resolution

Data taken on the final scanner with a "Derenzo" or "hot-rod" phantom with ¹⁸F.

Radial resolution < 1mm (above the state-of-the-art)

51898-z 15484 (2019) 1038/s41598-019-Sci Rep 9, Moliner, L. et al., https://doi.org/10.

			10 mm FWHM		
PET Name	Algorithm	Isotope	radial	tang.	axial
Celestion	SSRB + FBP	¹⁸ F	4.5	4.7	4.4
Biograph mCT flow	FORE + FBP	¹⁸ F	4.33	4.33	4.25
Biograph mCT	FORE + FBP	¹⁸ F	5.0	5.0	6.4
Biograph mMR	FORE + FBP	¹⁸ F	4.0	4.0	4.1
Vereos	3DFRP	¹⁸ F	3.99	3.99	3.99
Ingenuity TF	3DFRP	¹⁸ F	4.84	4.84	4.73
Ingenuity PET/MR	3DFRP	¹⁸ F	4.7	4.7	4.6
Geminity		¹⁸ F	5.06	4.84	4.73
SIGNA PET/MR	FBP	¹⁸ F	4.4	4.10	5.34
Discovery MI	FBP	¹⁸ F	4.02	3.97	4.39
Discovery IQ	OSEM (VPHD)	¹⁸ F	4.2	4.7	4.8
Dedicated PETs					
CareMiBrain	SSRB+2DFBP	²² Na	1.72	1.66	1.71
CareMiBrain	SSRB+2DFBP	¹⁸ F	2.34	1.93	1.94
BrainPET-4layer MPPC	2DFBP	²² Na	1.8-2.1	1.8 - 2.1	1.8 - 2.1
NeuroPET	FBP	²² Na	3.2	3.2	3.5
Human Brain Insert	OP-3DOSEM	¹⁸ F	1.8	2.9	2.7
G-PET	3D-FRP		4.2	4.2	5.2
ECAT HRRT	2D FBP	¹⁸ F	2.6	2.7	3.0
jPET-D4	SSRB+2DFBP	¹⁸ F	3.1	3.1	3.1
GAPD-PET		²² Na	3.0	3.0	—
PET-HAT	SSRB+2DFBP	²² Na	4.0	4.0	—
MB-PET	MLEM	²² Na	1.02	1.21	1.27

Table 6. Spatial resolution (center axial)

35

Sensitivity

Sensitivity (probability of pair detection at low count rate) of 0.092%

- But only half of the RPCs were installed. If all => triple the sensitivity.
- In the future could sextuple the sensitivity with 3x more RPCs.

Sensitivity is not so important. What matters is the noise-equivalent count rate (not yet)

Phantom of the cranium, brain and striatum nuclei Striatum was filled with 8-fold more activity concentration than the brain

Detail showing the separation between chambers, which are externally touching Global image of the (6 kBq/mL) brain Striatum (50 kBq/mL)

