

Searching for a charged Higgs bosons in *pp* collisions with the CMS detector

Pietro Vischia¹

¹IST/LIP-Lisboa

Seminários do LIP

Outline

Theoretical setup and search strategy

- Accelerator and detector
- **Reconstruction of objects**

Searching for a charged Higgs Light charged Higgs - $tan\beta < 1$ Light charged Higgs - $tan\beta > 1$

Heavy charged Higgs

Conclusions and outlook

References

Theoretical setup and search strategy

- An Higgs boson compatible with the SM one has been found at the LHC it might not be the only one!
- Multi-Higgs models might explain experimental observations
 - Baryon asymmetry: explicit and spontaneous CP violation.
 - Dark matter: dark matter candidates from doublets w/out a VEV
 - Neutrino oscillations: masses generated at \geq 1 loop
- MSSM is the minimal extension: h, H, A, H⁺, H⁻
 - One characteristic parameter: $tan\beta$ (ratio of VeVs of neutral Higgses)
 - After h(125), Higgs sector can be described using only $m_{H^{\pm}}$ and $tan\beta$
 - $\bullet~$ No prediction \rightarrow need to scan full parameter phase space

Searching for charged Higgs using top quarks - I

- H^{\pm} can be produced after top quark decays if $M_{H^{\pm}} < M_t M_b$
- $t\bar{t}$ cross section ~ 165 pb at 7 TeV
- Tau or charmed final states expected depending on tanß

Searching for charged Higgs using top quarks - II

• H^{\pm} can be produced in association with top quarks if $M_{H^{\pm}} > M_t - M_b$ 5FS dominates (similar to tW 4FS similar to ttH production production) Η

Searching for charged Higgs using top quarks - III

- m_h^{mod+} used as a reference scenario
- \mathcal{B} and σ values from LHC XS Working Group
 - Santander Matching is used to combine 4(5) flavour schemes

(Plots from [3])

$M_{H^{\pm}} < M_t - M_b$	$M_{H^{\pm}} > M_t - M_b$
Assume $\mathcal{B}(H^{\pm} o au u_{ au}) = 1$	${\cal B}(H^\pm o tb)$ dominant in MSSM
	${\cal B}(H^{\pm} o au u_{ au})$ still explorable
Contributions from:	Associated production:
pp ightarrow HbHb	$X ightarrow H^{\pm} t$
pp ightarrow HbWb	$X ightarrow H^{\pm}$ tb
Leptonic tau decays \Rightarrow dilepton ($e\mu$) final state	
Hadronic tau decays $\Rightarrow \ell au_h$, all-hadronic final states	
7 TeV, 8 TeV:	8 TeV:
CMS-PAS-HIG-12-052 [2]	CMS-PAS-HIG-13-026 [3]
CMS-PAS-HIG-14-020 [4]	
<i>c</i> s : CMS-PAS-HIG-13-035 [5]	

LHC - Large Hardon Collider

- Design center-of-mass energy: 14 TeV
- 5 fb⁻¹at 7 TeV (2011) and 20 fb⁻¹at 8 TeV(2012). Run at 13 TeV about to start

CMS - Compact Muon Solenoid

- General purpose detector
- 3.8 Tesla magnet enables excellent track momentum measurements
- 21.5 m long, 15 m diameter, lots of metal

Reconstruction of physics objects at CMS

Reconstruction of physics objects / I

- Particle flow: makes the best use of the detector
- Link calorimeter energy clusters with tracks
- Identify PF candidates as e, γ, μ , charged/neutral hadrons
- Simulation describes accurately observed composition
- Gain in jet and $E_{\rm T}^{\rm miss}$ energy resolution
- Optimal for tau reconstruction (next slide)

Reconstruction of physics objects: hadronic τ

• Tau decay:

- to light leptons (e,μ) and 2 neutrinos: $Br\sim35\%$
- to hadrons and one neutrino: $Br \sim 65\%$.
- Identification algorithm: Hadron+Strips (HPS)
- Decay mode finding discriminator (mass constraints on constituents)
- Many isolation working points for the cuts on particles in isolation code
- $e(\mu)$ rejection: low compatibility of leading had^{\pm} with $e(\mu)$ hypothesis

Hadronic τ identification performance

- Taus can be faked from:
 - Jets: measure in data from multijet events (gluon enriched), W/Z+jets and bb (quark enriched)
 - Charged leptons: measure in data from $Z \rightarrow \ell \ell$ events
- Efficiency can be measured in situ from $Z \rightarrow \tau \tau \rightarrow \mu \tau_h$ events

From JINST, 7 (2012) P01001 [8]

Searching for a light H^{\pm} tan β < 1: search with $c\bar{s}$ final states tan β > 1: search with $\tau \nu_{\tau}$ final states

Searching for a light H^{\pm} when $tan\beta < 1$

(Plots from [5])

Charged Higgs searches at CMS

Lepton + jets channel selection

• Trigger: single muon trigger

- Muon *p*_T > 24 GeV, |η| < 2.1
- Integrated luminosity: $19.7 \pm 0.5 \ fb^{-1}$
- Dominant backgrounds: *t*tproduction.
- Selection: $\geq 1 muon$, veto leptons, ≥ 4 jets, E_{T}^{miss} , ≥ 2 b-tagged jets

W/H mass reconstruction

- Fully reconstruct *t* events from the final state
 - Improved mass resolution of the hadronically decaying boson
- Constraining hypothesis:
 - Two top quarks, each decaying into a W boson and a b
 - One W boson decays into $\mu
 u_{\mu}$
 - One W/H decays into quark-antiquark' pair
 - Top mass constrained to 172.5 GeV (fit is for boson mass)

Vischia

Limits computation

- Representative diagrams for the $\ell \tau_h$ and e_μ final states
- SM expectations: assume theoretical prediction $\sigma(t\bar{t}) = 165^{+4}_{-9}(scale)^{+7}_{-7}(PDF) \ pb$
- Fully hadronic final state discussed onwards

Tau dilepton channel selection

- Data collected at a c.m. energy of 7 TeV
- Trigger: single lepton trigger, p_T > 17 27 GeV depending on flavour
- Integrated luminosity: $1.99 \pm 0.05 \ fb^{-1}$ ($e\tau_h$), $4.9 \pm 0.05 \ fb^{-1}$ ($\mu\tau_h$)
- Offline selection: 1 isolated lepton, ≥ 2 jets, E_T^{miss}, ≥ 1 b-tags, 1τ_h, opposite sign

Background estimate

- Irreducible $t\bar{t} \rightarrow W^+ bW^- \bar{b} \rightarrow \ell \nu b \tau_h \nu \bar{b}$ use simulation
- Fake τ_h
 - Dominant contributions:
 - *W* + jets
 - $t\bar{t} \rightarrow W^+ bW^- \bar{b} \rightarrow \ell \nu b q q' \bar{b}$
 - Use jet width to take into account differences in tau fake rate for gluons and jets

Charoled Hisgersearchestarons

$\mathbf{Jet} \rightarrow \tau_h \mathbf{probability}$

• k-Nearest-Neighbours algorithm:

- Phase space: $(p_T^{jet}, |\eta|^{jet}, R^{jet})$
- Training set of jets from dedicated real- τ_h -free samples
- Classify jets near to a reconstructed τ_h as fakes
- Obtain probability of faking a $\tau_h \propto$ number of fakes in the nearest 20 jets
- Extract a weights matrix $P(p_T^{jet}, |\eta|^{jet}, R_{jet})$
- Estimate in g/q-jets dominated samples and average the resulting probability

 Apply jet → τ_h probability to inclusive jet distributions

(Plots from [2])

 Obtain number of fake events as ratio between reweighted/unweighted jet distributions

(Plots from [2])

Limits, $\mu \tau_h$ final states

- Good agreement data/predictions \rightarrow set limits
- Perform a shape analysis of $R := \frac{p^{leadtrack}}{E^{\tau}}$ [10]
 - taus from the W are softer (left polarized)
 - taus from H^{\pm} are harder (right polarization)
- Exclude $\mathcal{B}(t \to H^{\pm}b)$ for most masses (syst limited)

Charged Higgs searches at CMS

 $e\mu$ channel (from [2])

- e_{μ} channel can be used as normalization channel for SM $t\bar{t}$
 - Improve on systematics of irreducible background
- Trigger: electron-muon trigger
 - $p_T^{\ell} > 8 \text{ GeV}$ and $pT^{\ell'} > 17 \text{ GeV}$
 - Integrated luminosity: $2.27 \pm 0.05 \text{ fb}^{-1}$
- Selection: 1 $e\mu$ pair, \geq 2 jets, veto low $e\mu$ masses, opposite sign
- Clean signature (≥ 90% purity after selection
- Expected deficit w.r.t. SM
 - Selection efficiency:
 - $\epsilon(H^+ \to \ell \nu_\ell) < \epsilon(W^+ \to \ell \nu_\ell)$
 - H⁺ case: softer lepton p_T spectrum

• Irreducible SM $t\bar{t}$ bkg dominating

Model-independent combined limit

- Combined limit calculated for all final states, $\ell \tau_h$, $e\mu$, $\tau_h + jets$ [2]
- Slight excess after combination
 - Driven by tau+jets final state

Model-dependent exclusion region

- Exclusion region in the MSSM plane
- $M_{SUSY-breaking}^{squarkmass} = 1 \text{ TeV}, \mu_{higgsino} = +200 \text{ GeV}$
- Other parameters in backup

Searching for a light H^{\pm} when tan $\beta > 1$, τ_h +jets final state

- *τ_h*+jets has been updated for 8 TeV data
- Gain from increased luminosity and improved background estimation

(Plots from [4])

Vischia

Charged Higgs searches at CMS

τ_h +jets channel selection

- Trigger: τ_h - E_T^{miss} trigger
 - $E_{\mathrm{T}}^{\mathrm{miss}} > 70$ GeV, τ_h w/ $p_T > 35$ GeV
 - Integrated luminosity: $19.7 \pm 0.5 \text{ fb}^{-1}$
- Dominant backgrounds: multijet production and EWK processes.
- Selection: 1 τ_h , \geq 3 jets, veto leptons, $E_{\rm T}^{\rm miss}$
- Exploit angular variables to suppress multijet background

No angular variables cut

After angular variables cut

Plots from [4])

Charged Higgs searches at CMS

τ_h +jets background estimation (from [4])

- Multijet background: use tau fakes method
 - Likelihood fit of E^{miss} distribution gives N(multijet, EWK+ttbar)
 - Multijet templates from data, EWK+ttbar from MC
 - Apply the obtained fake probability to data-driven template in signal region
- EWK+ttwith taus
 - "tau embedding": substitute muons with taus in $\mu + jets$ events and pass them though full selection
 - Differences w.r.t. the nominal MC distribution taken as source of systematic uncertainty

Templates in signal region

Embedding closure test

τ_h +jets final selection (from [4])

Transverse mass at final selections step is used for limit computation

Results

- Model-independent upper limits are computed for *B*(t → H[±]b × B(H[±] → τν)
- Limits are then interpreted as exclusion region in (m_{H[±]} tanβ) plane for the m^{mod+}_h scenario
- Not much space left available in the parameter space!

Searching for a heavy H^{\pm}

Event yields

- Same final states can be used
- Explore sensitivity to H^{\pm} in production of $t\bar{b}$
 - Change in *t*tkinematics and acceptance
 - Extra b-jet multiplicity
- Use full 8 TeV dataset

Signal normalized to $\sigma = 1$ pb, $\mathcal{B} = 100\%$ (Plots from [3])

Vischia

Charged Higgs searches at CMS

Fake rate estimate

- Improved estimation of the tau fake rate
 - Use dedicated samples for data-driven estimate
 - Full account of quark/gluon composition in the sample
 - Improved median for fake rate estimation

Charged Higgs searches at CMS

February 05th, 2015 36 / 44
Final selection - $\mu\tau$ and dilepton final states

Accounting for charge conjugate production

	μau_h	final state	N_{events} (± stat. ± syst.)	
-	$H^+ \rightarrow \tau_{\rm h} \nu$, <i>M</i> _{H+} = 250 GeV	$176\pm 6\pm 13$	_
	$H^+ ightarrow tb$,	$M_{H^+} = 250 { m GeV}$	$37\pm2\pm3$	
_	tī-	$\rightarrow \mu \tau_h + X$	$2836\pm42\pm237$	
	· · · · · · · · · · · · · · · · · · ·	au fakes	1544 \pm 175	
	tī	dileptons	$96\pm7\pm13$	
	Z/γ	$ ightarrow$ ee, $\mu\mu$	$12\pm5\pm4$	
	Ζ/	$\gamma \to \tau \tau$	$162\pm20\pm14$	
	si	ngle top	$150\pm 8\pm 18$	
	d	ibosons	$20 \pm 1 \pm 2$	
	total SN	I backgrounds	$4821 \pm 48 \pm 296$	_
	data		4839	
=				_
= Dilepton final s	states	ee	θμ	μμ
$\frac{1}{1} \frac{1}{1} \frac{1}$	states = 250 GeV	$ee \\ 39 \pm 3 \pm 3$	$\frac{e\mu}{97 \pm 4 \pm 5}$	$\frac{\mu\mu}{40\pm3\pm3}$
	states = 250 GeV = 250 GeV		$e\mu$ 97 ± 4 ± 5 219 ± 5 ± 5	$\frac{\mu\mu}{40 \pm 3 \pm 3} \\ 90 \pm 3 \pm 2$
	states = 250 GeV = 250 GeV ns	$\begin{array}{c} ee \\ \hline 39 \pm 3 \pm 3 \\ 85 \pm 3 \pm 2 \\ \hline 5693 \pm 17 \pm 140 \end{array}$	$\begin{array}{c} e\mu \\ 97 \pm 4 \pm 5 \\ 219 \pm 5 \pm 5 \\ 15295 \pm 28 \pm 376 \end{array}$	$\frac{\frac{\mu\mu}{40 \pm 3 \pm 3}}{90 \pm 3 \pm 2}$ 6333 ± 18 ± 156
$\begin{array}{c} = \\ \hline \\$	states = 250 GeV = 250 GeV ns	$\begin{array}{c} ee \\ \hline 39 \pm 3 \pm 3 \\ 85 \pm 3 \pm 2 \\ \hline 5693 \pm 17 \pm 140 \\ 22 \pm 4 \pm 1 \end{array}$	$\begin{array}{c} e\mu \\ 97 \pm 4 \pm 5 \\ 219 \pm 5 \pm 5 \\ 15295 \pm 28 \pm 376 \\ 40 \pm 5 \pm 1 \end{array}$	$= \frac{\mu\mu}{40 \pm 3 \pm 3}$ 90 ± 3 ± 2 6333 ± 18 ± 156 16 ± 3 ± 0
$ \begin{array}{c} = \\ \hline \\$	states = 250 GeV = 250 GeV ns	$\begin{array}{c} \hline ee \\ \hline 39 \pm 3 \pm 3 \\ 85 \pm 3 \pm 2 \\ \hline 5693 \pm 17 \pm 140 \\ 22 \pm 4 \pm 1 \\ 96 \pm 8 \pm 2 \\ \end{array}$	$\begin{array}{c} e\mu \\ \hline 97 \pm 4 \pm 5 \\ 219 \pm 5 \pm 5 \\ 15295 \pm 28 \pm 376 \\ 40 \pm 5 \pm 1 \\ 38 \pm 3 \pm 1 \end{array}$	$= \frac{\mu\mu}{40 \pm 3 \pm 3}$ $\frac{90 \pm 3 \pm 2}{6333 \pm 18 \pm 156}$ $16 \pm 3 \pm 0$ $138 \pm 10 \pm 4$
$\begin{array}{c} = \\ \hline \textbf{Dilepton final s} \\ \hline H^+ \rightarrow \tau \nu, M_{H^+} = \\ H^+ \rightarrow tb, M_{H^+} = \\ \hline tt \text{ dilepton} \\ \text{other } tt \\ \hline \textbf{Drell-Yar} \\ W+jets, multi$	states 250 GeV 250 GeV 1s 1 i-jets	$\begin{array}{c} ee \\ \hline & \\ 39 \pm 3 \pm 3 \\ 85 \pm 3 \pm 2 \\ 5693 \pm 17 \pm 140 \\ 22 \pm 4 \pm 1 \\ 96 \pm 8 \pm 2 \\ 6 \pm 2 \pm 0 \end{array}$	$\begin{array}{c} e\mu \\ \hline \\ 97 \pm 4 \pm 5 \\ 219 \pm 5 \pm 5 \\ \hline \\ 15295 \pm 28 \pm 376 \\ 40 \pm 5 \pm 1 \\ 38 \pm 3 \pm 1 \\ 4 \pm 1 \pm 0 \\ \end{array}$	$= \frac{\mu\mu}{40 \pm 3 \pm 3}$ $90 \pm 3 \pm 2$ $6333 \pm 18 \pm 156$ $16 \pm 3 \pm 0$ $138 \pm 10 \pm 4$ $0 \pm 1 \pm 0$
$\begin{array}{c} = \\ \hline \\$	states = 250 GeV : 250 GeV ns n i-jets o	$\begin{array}{c} ee \\ \hline 39 \pm 3 \pm 3 \\ 85 \pm 3 \pm 2 \\ \hline 5693 \pm 17 \pm 140 \\ 22 \pm 4 \pm 1 \\ 96 \pm 8 \pm 2 \\ 6 \pm 2 \pm 0 \\ 198 \pm 6 \pm 5 \\ \end{array}$	$\begin{array}{c} e\mu \\ 97 \pm 4 \pm 5 \\ 219 \pm 5 \pm 5 \\ 15295 \pm 28 \pm 376 \\ 40 \pm 5 \pm 1 \\ 38 \pm 3 \pm 1 \\ 4 \pm 1 \pm 0 \\ 522 \pm 16 \pm 13 \end{array}$	$= \frac{\mu\mu}{40 \pm 3 \pm 3}$ $90 \pm 3 \pm 2$ $6333 \pm 18 \pm 156$ $16 \pm 3 \pm 0$ $138 \pm 10 \pm 4$ $0 \pm 1 \pm 0$ $228 \pm 10 \pm 6$
$ \begin{array}{c} = \\ \hline \hline \\ \hline$	states = 250 GeV = 250 GeV = 250 GeV = 1 =	$\begin{array}{c} ee \\ \hline 39 \pm 3 \pm 3 \\ 85 \pm 3 \pm 2 \\ \hline 5693 \pm 17 \pm 140 \\ 22 \pm 4 \pm 1 \\ 96 \pm 8 \pm 2 \\ 6 \pm 2 \pm 0 \\ 198 \pm 6 \pm 5 \\ 15 \pm 1 \pm 0 \\ \end{array}$	$\begin{array}{c} e\mu \\ 97 \pm 4 \pm 5 \\ 219 \pm 5 \pm 5 \\ 15295 \pm 28 \pm 376 \\ 40 \pm 5 \pm 1 \\ 38 \pm 3 \pm 1 \\ 4 \pm 1 \pm 0 \\ 522 \pm 16 \pm 13 \\ 43 \pm 2 \pm 1 \end{array}$	$= \frac{\mu\mu}{40 \pm 3 \pm 3}$ 90 ± 3 ± 2 6333 ± 18 ± 156 16 ± 3 ± 0 138 ± 10 ± 4 0 ± 1 ± 0 228 ± 10 ± 6 20 ± 1 ± 1
$\begin{array}{c} = \\ \hline \\$	states = 250 GeV : 250 GeV : 250 GeV : :-jets : : : : : : : : : : : : :	$\begin{array}{c} ee \\ \hline \\ 39 \pm 3 \pm 3 \\ 85 \pm 3 \pm 2 \\ 5693 \pm 17 \pm 140 \\ 22 \pm 4 \pm 1 \\ 96 \pm 8 \pm 2 \\ 6 \pm 2 \pm 0 \\ 198 \pm 6 \pm 5 \\ 15 \pm 1 \pm 0 \\ 6030 \pm 20 \pm 140 \end{array}$	$\begin{array}{c} e\mu \\ \hline \\ 97 \pm 4 \pm 5 \\ 219 \pm 5 \pm 5 \\ 15295 \pm 28 \pm 376 \\ 40 \pm 5 \pm 1 \\ 38 \pm 3 \pm 1 \\ 4 \pm 1 \pm 0 \\ 522 \pm 16 \pm 13 \\ 43 \pm 2 \pm 1 \\ 15942 \pm 33 \pm 376 \\ \end{array}$	$= \frac{\mu\mu}{40 \pm 3 \pm 3}$ $90 \pm 3 \pm 2$ $6333 \pm 18 \pm 156$ $16 \pm 3 \pm 0$ $138 \pm 10 \pm 4$ $0 \pm 1 \pm 0$ $228 \pm 10 \pm 6$ $20 \pm 1 \pm 1$ $6735 \pm 23 \pm 156$

Signal normalized to $\sigma = 1 \text{ pb}, B = 100\%$

Vischia

Charged Higgs searches at CMS

Limit computation

- Approaches chosen for dealing with the two different decay channels
 - Use benchmark model: m^{mod+}_h
 - Assume separately Br = 100% for each channel while setting to zero the other
- Leptonic analyses: exploit the expected higher b-jets multiplicity in the signal w.r.t. SM
- b-tagged jets multiplicity shape used for the limits setting procedure

Result in the m_h^{mod+} **reference scenario:** $\mu \tau + e\mu + ee + \mu\mu$

- Signals weighted according to m_h^{mod+} predictions
- Chosen reference $tan\beta = 30$
- Limits are always higher than the m_h^{mod+} prediction
- No enough sensibility to exclude portions of parameter space in the chosen scenario

Single-contributing channel approach: $\mu \tau + e\mu + ee + \mu\mu$

- Each channel is allowed to contribute exclusively
- Assume that one of them has B = 1 and the other has B = 0

(Plots from [3])

Limit computation in τ_h +jets

- Complement search with τ_h +jets final state
- Transverse mass at final selections step is used for limit computation
- In the heavy charged Higgs mass case, better discrimination than in the light mass case

Summary: heavy charged Higgs

- Best results for the two decay modes:
 - Fully hadronic final state for $H^{\pm} \rightarrow \tau \nu$ decays
 - Leptonic (dilepton) final states for $H^{\pm} \rightarrow tb$ decays (the only result!)

(Plots from [3] and [4])

Conclusions

Summary

- We have searched for a charged Higgs boson with the CMS detector using the full dataset
- Combine different final states to fully scan the mass versus $tan\beta$ plane
 - Results interpreted in the context of the MSSM model
- Unfortunately, data is consistent with background predictions
 - Stringent limits are set from our direct searches
- These preliminary results are now being combined into a paper and into my thesis

THANKS FOR THE ATTENTION!

References I

CMS Collaboration.

Search for a light charged Higgs boson in top quark decays in pp collisions at $\sqrt{s} = 7 \ TeV$ Journal of High Energy Physics, 07 (2012) 143.

CMS Collaboration

Updated search for a light charged Higgs boson in top guark decays in pp collisions at $\sqrt{s} = 7$ TeV CMS-PAS-HIG-12-052, [CDS: 1502246]

CMS Collaboration

Search for a heavy charged Higgs boson in proton-proton collisions at $\sqrt{s} = 8$ TeV with the CMS detector CMS-PAS-HIG-13-026, [CDS:1755203]

CMS Collaboration

Search for charged Higgs bosons with the H+ to tau nu decay channel in the fully hadronic final state at $\sqrt{s} = 8 \ TeV$

CMS-PAS-HIG-14-020, [CDS:1950346]

References II

CMS Collaboration

Search for H[±] to cs-bar decay CMS-PAS-HIG-13-035, [CDS:1728343]

CMS Collaboration

Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and *E*_T^{miss} <u>CMS-PAS-PFT-09-001</u>, [CDS:1194487]

CMS Collaboration Performance of muon identification in *pp* collisions at $\sqrt{s} = 7$ *TeV* CMS-PAS-MUO-10-002, [CDS:1279140]

CMS Collaboration Performance of τ -lepton reconstruction and identification in CMS JINST, 7, P01001 (2012)

CMS Collaboration

Performance of the b-jet identification in CMS CMS-PAS-BTV-11-001, [CDS:1366061]

References III

Roy, D.P. Looking for the charged Higgs boson doi Mod. Phys. Lett, A19, 1813-1828, 2004 [arXiv:hep-ph/0406102]

CMS Collaboration

8 TeV Jet Energy Corrections and Uncertainties based on 19.8 *fb*⁻¹of data in CMS CMS-DP-2013-033, [CDS:1627305]

CMS Collaboration

Jet Energy Corrections and Uncertainties. Detector Performance Plots for 2012.

CMS-DP-2012-012, [CDS:1460989]

CMS Collaboration

CMS Particle Flow and Tau Identification Results https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsPFT

References IV

CMS Collaboration Performance of quark/gluon discrimination in 8 TeV pp data CMS-PAS-JME-13-002, [CDS:1599732]

BACKUP SLIDES

kNN method for jet $\rightarrow \tau_h$ **probability**

• k-Nearest-Neighbours algorithm:

- Phase space: $(p_T^{jet}, |\eta|^{jet}, R^{jet})$
- Training set of jets from dedicated real- τ_h -free samples
- Classify jets near a reconstructed τ_h as fakes
- Obtain probability of faking a $\tau_h \propto$ number of fakes in the nearest 20 jets
- Extract a weights matrix $P(p_T^{jet}, |\eta|^{jet}, R_{jet})$
- Estimate in g/q-jets dominated samples and average the resulting probability

(from TMVA Users Guide)

- TAUOLA package used to simulate tau decays
- Full detector simulation based on GEANT4

Process	σ (pb)	Generator
MSSM signal		PYTHIA
tt	165	MADGRAPH + PYTHIA
	7.87 (7.87) tW channel	POWHEG
Single top	42.6 (22.0) t channel	POWHEG
	2.7 (1.5) s channel	POWHEG
W+Jets	31314	MADGRAPH + PYTHIA
$DY \rightarrow \ell \ell$	3048	MADGRAPH + PYTHIA
QCD (μ enriched)	84679	PYTHIA
WW	43	PYTHIA
WZ	18.2	PYTHIA
ZZ	5.9	PYTHIA

HIG-12-052: Sources of systematic uncertainty

	HH	WH	$t\bar{t}_{\ell\tau}$	ttel	τ fakes	Single top	VV	$DY(ee, \mu \mu)$	$DY(\tau \tau)$
τ-jet id	6	6	6			6	6		6
jet, $\ell \rightarrow \tau$ mis-id				30				30	
JES+JER+MET	6	4	5	4		6	11	100	21
b-jet tagging	6	5	5	5		7			
jet→b mis-id							9	9	9
pile up	4	2	2	8		2	3	25	4
lepton selection	2	2	2	2		2	2	2	2
τ fakes					5				
cross-section		+	-7 -10			8	4	4	
MC stats	4	5	1	3		4	11	100	35
luminosity			2.2					2.2	

$\mu \tau_h$ channel

$e\tau_h$ channel

	HH	WH	tt _{ℓτ}	tt _{ee}	au fakes	Single top	VV	$DY(\mu \mu)$	$DY(\tau \tau)$
τ -jet id	6.0	6.0	6.0			6.0	6.0		6.0
jet, $\ell \rightarrow \tau$ mis-id				15.0				15.0	
JES+JER+MET	6.0	5.0	5.0	4.0		6.0	11.0	100.0	22.0
b-jet tagging	6.0	5.0	5.0	5.0		7.0			
jet→b mis-id							8.0	8.0	9.0
pileup modelling	4.0	2.0	2.0	8.0		2.0	3.0	25.0	4.0
lepton selections	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0
τ fakes (stat)					10.0				
τ fakes (syst)					12.0				
cross-section	+7.0 -10				8.0	4.0	4.	0	
MC stats	5.0	4.0	2.0	9.0		4.0	9.0	100.0	16.0
luminosity			4.5				4	4.5	

HIG-12-052: Sources of systematic uncertainty

• Same methods as in $\ell \tau_h$ channels

	HH	WH	tī	DY(ℓℓ)	W+jets	Single top	diboson	
JES+JER+ <i>E</i> ^{miss}	2.1	2.0	2.0	6.0	10.8	4.0	6.5	
cross section	+7 -10		4.3	5.0	7.4	4.0		
pileup modeling	4.5	4.5	5.0	5.5	4.0	5.5	5.5	
MC stat	5.3	7.9	1.0	6.5	42.9	1.9	4.3	
luminosity	2.2							
dilepton selection	2.5							

Limits, $e\tau_h$, $\mu\tau_h$ final states

- Expectations from simulation compared with observed data yields
- Assumption: any excess/deficit w.r.t expected SM yield is due to $t \rightarrow H^+ b$
 - Limits improved in μau_h final state (from \sim 5% in the paper)
 - Systematics drive the estimation

Results in the fully hadronic final state

- Results are available only for $\mathcal{B}(H^{\pm} \to \tau_h \nu)$
- Tighter limits than the leptonic analyses
- No result for H[±] → tb: if there, it is included in the data driven estimation of EWK+ttbar with τ_hbackground

$\begin{array}{c} \pmb{e}\mu \text{ final state} \\ \text{Event selection} \\ \text{Yields and limit computation} \end{array}$

Cutflow, yields and results

Analysis to be improved at 13 TeV

- Search for light MSSM H^{\pm} boson in $\ell \tau_h$, e_{μ} and fully-hadronic final states at $\sqrt{s} = 7 \ TeV$
- No deviations from expected limit with luminosities of 2.3 to 4.9 fb⁻¹

- TAUOLA package used to simulate tau decays
- Full detector simulation based on GEANT4

Process	σ (pb)	Generator
MSSM signal		PYTHIA
tt	245.8	MADGRAPH + PYTHIA
	11.1 (11.1) tW channel	POWHEG
Single top	56.4 (30.7) t channel	POWHEG
	3.8 (1.8) s channel	POWHEG
W+Jets	37509	MADGRAPH + PYTHIA
$DY \rightarrow \ell \ell$	3504+861	MADGRAPH + PYTHIA
QCD (μ enriched)	134680	PYTHIA
WW	54.8	PYTHIA
WZ	33.7	PYTHIA
ZZ	17.6	PYTHIA

HIG-13-026: E_T^{miss} at final selection /1

Signal normalized to $\sigma = 1$ pb, $\mathcal{B} = 100\%$

HIG-13-026: E_T^{miss} at final selection /2

Signal normalized to $\sigma = 1$ pb, $\mathcal{B} = 100\%$

HIG-13-026: Lepton transverse momentum at final selection

- τ pt ($\mu\tau$ final state)
- Inclusive leptons pt (dilepton final states)

Signal normalized to $\sigma = 1$ pb, $\mathcal{B} = 100\%$

Charged Higgs searches at CMS

HIG-13-026: Lepton transverse momentum multiplicity at final second at 1/2

Inclusive leptons pt

Signal normalized to $\sigma = 1$ pb, $\mathcal{B} = 100\%$

Vischia

Charged Higgs searches at CMS

HIG-13-026: Systematic components

	Signal	tī _{ℓτ}	tī _{ll}	au fakes	Single top	VV	$DY(ee, \mu \mu)$	$DY(\tau \tau)$
au-jet id	6	6			6	6		6
jet, $\ell \rightarrow \tau$ mis-id			30				30	
JES+JER+ET +TES	6	5	4		6	11	100	21
b-jet tagging	6	5	5		7			
jet→b mis-id						9	9	9
pile up	4	2	8		2	3	25	4
lepton selection	2	2	2		2	2	2	2
τ fakes				11				
cross section	30	3	3		8	4	4	
top quark p _T scale		shape	shape					
au embedding								shape
matching scale		1	1					
PDF	1	5	5					
Q ² scale		3	3					
MC statistics	3	1	3		4	11	100	35
luminosity					3			

$e\mu$ channel ($ee,\mu\mu$ are similar)

	Signal	tī	DY	W+jets	Single top	VV
Energy scales (JES+JER+ETmiss)	2	2	6	11	4	7
b-jet tagging	3	4	9	10	4	9
jet→b mis-id	3	4	10	11	4	9
pile up	5	5	6	4	6	6
dilepton selection	3	3	3	3	3	3
cross section	30	3	4	5	7	4
DY ET modeling			30			
top quark pT scale		shape				
matching scale		1				
PDF	1	5				
Q ² scale		3				
MC statistics	1	1	7	43	2	4
luminosity				3		

HIG-13-026: Event yields /2

Signal normalized to $\sigma = 1$ pb, $\mathcal{B} = 100\%$

HIG-13-026: Btag multiplicity at final selection /2

Signal normalized to $\sigma = 1$ pb, $\mathcal{B} = 100\%$

Event selection $\mu\tau$ final state

- Data collected at a c.m. energy of 8 TeV
- Trigger: single muon trigger.
 - $\mu \tau_h$: single muon trigger ($p_T^{\mu} > 24 \text{ GeV}$)
 - Integrated luminosity: $19.7 \pm 0.5 \ fb^{-1}$

• Selection: 1 muon, \geq 2 jets, E_T^{miss} , \geq 1 b-tags, $1\tau_h$, opposite sign

Event selection - dilepton final states

- Trigger: dilepton (e, µ) trigger
 - One lepton with $p_T > 8 \text{ GeV}$ and another with pT > 17 GeV
 - Integrated luminosity: 19. \pm 0.5 fb⁻¹
- Selection: $1\ell\ell'$ pair, ≥ 2 jets, veto low dilepton masses, Z mass veto, opposite sign

Background estimation: $\mu \tau$ channel: *jet* $\rightarrow \tau$ fakes

- $\mu\tau$ channel: $DY \rightarrow \tau\tau$ from embedded data
- *ll'* channels: additional Drell-Yan normalization uncertainty
- All the others taken from MC

Fake rate estimate

Vischia

- Use dedicated samples to perform the data-driven estimation
- Recompute fake rates for 8 TeV using kNN algorithm
- Account for the quark/gluon jets compositions of the samples from MC
- Improved median for the estimate of the fake events (see Matti's talk)

Event yields

Signal normalized to $\sigma = 1$ pb, $\mathcal{B} = 100\%$