Outline

- Objectives and user stories
An interTwin k8s virtual node
State of the art
First pilot experiences
Current status and plans

Inter Twin

Enabling transparent access to heterogeneous
computing providers via interLink

Diego Ciangottini -
On behalf of the interTwin WP5 group

m interTwin is funded by Horizon Europe under grant agreement n° 101058386

- Federate a set of highly heterogeneous

and disparate providers
- enabling a "transparent payload offloading"

- Flexible extension of existing

computing clusters to remote resources
- E.g. HPC, specialized hardware...

- Terminology
- Containers as the unit of compute
- Meaning starting from a strawman model
where all the payloads are containerized
- Offloading:
- A seed of resources available on cloud
providers, the heavylift is done
“transparently” delegating (offloading) the
execution of the containers on hpc/remote
resources

Data Operator

Replica Manager

Resources Accounting
S|

/

/" Orchestrotor on

federated cloud
resources

’ ‘&
," cLoud Pre-Existing K¥s cluster
v PROVIDER 2
cLoud & ?>\
PROVIDER 1 [30
N

ze Pre-existing SERVICE B
OPfloading Site Y=o _
....... VonTey Install vk
! . A
o node | Virtual 1 £
| TR

"
)4 node)

SERVICE B

OPfloading Site X

'
e)
N L
. \\srrex S\SITEY
Interlik > - N
- Interlink L
N7 d

O User stories: Scheduling K8 POD on HPC

This is the most generic one:

e | have a container and | want it executed on a node with N GPUs and M
GB of RAM

e | wantto create a simple container to be scheduled on a remote Slurm
batch on an HPC center

=
‘ 09
My container (C— 0y

HPC GPU Node

O User story: Jupyter notebooks

For development of ML pipelines, Jupyter notebooks are a common
solutions
e | want access to a hub where I can ask for the spawning of a JupyterLab
instance on a node with GPUs
e Inother words | want to schedule a JupyterLab container on a
remote slurm cluster

---- -,
- -
> " -

o”
-

|
TJupyter 1 Intertwin i _-
e/ ' black box -
i

ML/ notebooks

O User story: pipelines/workflows

e Frameworks for DAG/workflow managements are usually well
integrated with K8s APIs

e Pilot exploitation possible thanks to interTwin Al Workflow
management activities

wWorkflow pay[oad

Intertwin
black box

"—\'»5 G)
S
@)

My ks cluster HPC GPU Node

My ML p?Pel?ne_

O User story: Serverless

e Executing payload in response of an external trigger

e Pilot exploitation with dCNiOS (dCache + Nifi + OSCAR) devs for a
first round of validation with payload executed on a virtual node

Iﬂ'tef'tk/;n I -

o

My k€s cluster HPC &PU Node

My Function

https://www.google.com/url?q=http://github.com/grycap/dcnios&sa=D&source=editors&ust=1687214043604191&usg=AOvVaw3F8FIK5srtoAkcp62CrOiO

O Building an “offloading” prototype

- Extend the container orchestration de-facto standard (K8s) to
support offloading under the hood

- What about making a Kubernetes cluster send your containers/pod
to a “virtual” node that seamlessly takes care of your application
lifecycle on a remote server/hpc batch queue?

- Meaning that the API layer exposed is the “normal” set of K8s apis

A Kelsey Hightower @
@kelseyhightower
The problem is we asked developers to do all

N.B. We aim to use Kubernetes as the workhorse for . that. Kubemetes is not a tool for developers.

the “offloading”, NOT as the user interface though They can use it, but we have to be honest,
Kubernetes is low level infrastructure and works -
best when people don't know it's there.

O The enabling technology

Virtual ku belet (VK): Kubernetes API

“Open-source Kubernetes kubelet o Y
implementation that masquerades as v |
a kubelet. This allows Kubernetes o o e ot i }

.........

nOdeS to be baCked by Virtual Ku belet Typical kubelets implement the pod and container

operations for each node as usual.

: ”
providers
Virtual kubelet registers itself as a “node” and allows developers to
deploy pods and containers with their own APIs.
: SN \‘I
Capacity 1 NodeConditions
. 1
. I virtual
OperatingSystem | kubelet : GotPods
CreatePod ! 1
k. /s GetPodStatus
Knoc project has been the trigger of our interest. UpdatePod GetPod

https://virtual-kubelet.io/
https://github.com/CARV-ICS-FORTH/KNoC

All in all the flow we want to achieve

Execu‘te_ my code on a node | User P""’/loo‘d
:‘ with 4 6PUs 1
N\ — e e _I ___________ 7/
______________ Vo
. ' Frawmework:

| |
ICreate a K¥s Pod: Lo ML pipehne
nodeA‘PP}nI‘ty: Ve,gaHPC ' - FaaS
|

: label: slurmOptionsf--gpus 42 - ; 2
\ e ¥ InterTuin CLI? Application responsibility

v Vo . _
|| Assign Pod to wWode | Us:oj :_‘“"e”‘etes Infra responsibility
[| sScheduling:
. . ith label VeqaHCP | J
| '\ “ abel VegaH) - match node aPPini‘tl/
I ————mm - =~ m——— -
PRCS\?IL;;}ER E V - No intemal Pod shared network
! Virtual node - HPC virtual node not supposed to run
| Via Vk services to be exposed outside
! 1 - Execution of standalone container
--------------------- V2 pou/loods
HPC wmoenia

interLink

We extended the VK solutions with ¢

a first draft of a) ,QL | |

k8s POD requests are digested B O ¢ o ¢ Q
through the API layer (e.g. deployed i VT

on an HPC edge)

https://github.com/interTwin-eu/interLink

O Building the first prototype

(&J Quick Start

« Fastest way to start using interlink, is by deploying a VK in Kubernetes using the prebuilt image:

kubectl create ns vk
kubectl kustomize ./kustomizations
kubectl apply -n vk -k ./kustomizations

- We have a first implementation
ready for a first round of
validation

« Then, use Docker Compose to create and start up containers:

docker compose -f docker-compose.yaml up -d

« You are now running:
o A Virtual Kubelet
o Thefatarlinl
- AD{ Quick-start: InterLink

* Submitd stall binaries
kubec curl -sfL https://cloud-pg.github.io/interLink/itwinctl.sh | sh -s - install
- Validated already on different pilot Start daemons

systems (see later)

curl —-sfL https://cloud-pg.github.io/interLink/itwinctl.sh | sh -s - start

Restart daemons

A development guide for creating custom T T T A | 218 o
plugin (like the slurm one) is available. —

curl —-sfL https://cloud-pg.github.io/interLink/itwinctl.sh | sh -s - stop 11

o What it takes from user/framework POV

test-vk NotReady agent 6m39s
vega-new-vk _ Ready agent 17d

- Virtual nodes are available as normal/
nOdes BUT zr:;;/?r;;zn: vl

metadata:
name: test-pod-cfg
namespace: oscar
annotations:
slurm-job.knoc.1o0/flags: "--job-name=test-pod-cfg -t 2800 --ntasks=8 --nodes=1 --mem-per-cpu=2000"

- Pods created by either users or

restartPolicy: OnFailure

frameworks have to EXPLICITLY indicate e wcer: susposatest

° ° - volumeMounts:
- name: foo
a k8s node affinity and toleratio
readOnly: true
env:
- name: BOOKKEEPING
value: keepmehere
command :
- sleep
NO shared FS ilable:
= S a re a re aval a e- imagePullPolicy: Always
name: busyecho
dnsPolicy: ClusterFirst
nodeSelector:
kubernetes.io/hostname: vega-new-vk
tolerations:
- key: virtual-node.interlink/no-schedule
operator: Exists
volumes:
- name: foo
emptyDir: {}

12

o Status of pilot implementations

Infrastructure: the following sites were federated under a common K8s cluster deployed on
cloud resources
- Vega - EuroHPC

(base) * ~ kubectl get pod -n oscar test-pod-cfg-x-oscar-x-oscar -o wide
NAME READY STATUS RESTARTS AGE IP NODE
test—pod—cfg;x—oscar—x—oscar 1/1 Running 1 24h 127.0.0.1 vega-new-vk
J ue I iCh [ciangottinid@intertwin ~]$ squeue --me -i5
Tue Sep 26 09:41:12 2023
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
4086045 cpu test-pod ciangott R 1-00:41:14 1 cn0130

Applications /
- Oscar at Vega

- Alot of useful feedback already — looking forward to the next round of iteration

- MLFlow at Juelich
$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS

826dbe86c9cl ghcr.io/intertwin-eu/t6.5-ai-and-ml:containers "sleep 10000000" 7 minutes ago Up 6 minutes

13

A first version of the interTwin offloading system has been prototyped
and the fruitful collaboration with Vega and Juelich represented a key
to the success for this early implementation

Lessons learnt (technical):

m volume and Apptainer/Singularity
m Site resources access policies
m FS permission etc..

Next steps and priorities

14

BACKUP

e The initial idea is a model where each k8s cluster admin is responsible
for authorizing access to the remote resources

m e.g. contacting IdP for additional user info
m Requesting additional information from pod annotation (e.g. the username of the

payload owner)
=\ OAuth2 O
~ Proxy

IAM IdP
. post . | eer . . Dpetete | _-° KUBERNETES CLUSTER
------------------- COUUOODOUN0000OCEORSRNRRRRRRRN -

Mock SLURM
Local, hte ...
Interlink P[uﬁ‘m [Interlink P[ug‘m] [ocal, hte 1 16

https://oauth2-proxy.github.io/oauth2-proxy/

e Current implementation support generic OAuth2 access token via
Authorization header

oauth2 proxy

=\ OAuth2 Q
~ Proxy

IAM IdP
ey GET peteTe - KUBERNETES CLUSTER
------------------- T N

Mock SLURM
Interlink P[ug’m [Interlink P[ug'm] [Loca[, hte ... 1 17

https://oauth2-proxy.github.io/oauth2-proxy/
https://oauth2-proxy.github.io/oauth2-proxy/

O Orchestrating deployment on cloud

Compute Resource orchestration is a critical
feature to implement infrastructure federation

functionality

e to automate the deployment and setup of

user-defined services
e make decisions regarding provider selection

/Gentification of the best Cloud provider b%
utilising a variety of features based on both static

and dynamic metrics.

e The static metrics can be defined in advance
e Dynamic information collected at runtime and

K continuously updated. Intertwin enhancemeny 18

O A key aspect...

How the cloud dynamic orchestration and federation integrates with the
offloading mechanism ?

e With interTwin we plan to enhance the orchestration system for the
workload offloading mechanism

For the system to successfully implement the workload offloading mechanism, it is
essential to include and rely on a detailed information system that collects and
ublishes information about the different heterogeneous providers in the

ederation.
E.g. we plan to use the interLink APIs layer to send telemetry/traces

The overall configuration should be fully transparent to the end users. Keeping the
possibility to go “advanced mode” and tweak manually the desired parameters.

19

The design has been discussed and agreed (see the deliverable)

The plan is to start with a semi-manual setup
- We deploy services via PaaS orchestrator
- We configure the services (by hands initially) to offload

This is a procedure to be adopted on the pilots (see later)

A key is that WP6 and users start defining requirements (i.e. TOSCA
templates/Helm charts/whatever for the services to be deployed)

20

