
Enabling transparent access to heterogeneous
computing providers via interLink

Diego Ciangottini -
On behalf of the interTwin WP5 group

Outline
- Objectives and user stories
- An interTwin k8s virtual node
- State of the art
- First pilot experiences
- Current status and plans

Objectives

- Federate a set of highly heterogeneous
and disparate providers

- enabling a "transparent payload offloading"
- Flexible extension of existing

computing clusters to remote resources
- E.g. HPC, specialized hardware…

2

- Terminology
- Containers as the unit of compute

- Meaning starting from a strawman model
where all the payloads are containerized

- Offloading:
- A seed of resources available on cloud

providers, the heavylift is done
“transparently” delegating (offloading) the
execution of the containers on hpc/remote
resources

We are here

User stories: Scheduling K8s POD on HPC

This is the most generic one:
● I have a container and I want it executed on a node with N GPUs and M

GB of RAM
● I want to create a simple container to be scheduled on a remote Slurm

batch on an HPC center

3

User story: Jupyter notebooks

For development of ML pipelines, Jupyter notebooks are a common
solutions
● I want access to a hub where I can ask for the spawning of a JupyterLab

instance on a node with GPUs
● In other words I want to schedule a JupyterLab container on a

remote slurm cluster
○ Similar to the previous one, with the exception of bidirectional connection needed

b/w Lab and HUB that is a bit tricky

4

User story: pipelines/workflows

● Frameworks for DAG/workflow managements are usually well
integrated with K8s APIs
○ Airflow/Kubeflow pipelines/Argo wokflows/MLFlow are no exceptions

● Pilot exploitation possible thanks to interTwin AI Workflow
management activities
○ CERN group in particular has technically produced a demo container image for this

5

User story: Serverless

● Executing payload in response of an external trigger
○ Being it a storage event or a web server call

● Pilot exploitation with dCNiOS (dCache + Nifi + OSCAR) devs for a
first round of validation with payload executed on a virtual node

6

https://www.google.com/url?q=http://github.com/grycap/dcnios&sa=D&source=editors&ust=1687214043604191&usg=AOvVaw3F8FIK5srtoAkcp62CrOiO

Building an “offloading” prototype

- Extend the container orchestration de-facto standard (K8s) to
support offloading under the hood

- With little to no knowledge required from the end user perspective
- What about making a Kubernetes cluster send your containers/pod

to a “virtual” node that seamlessly takes care of your application
lifecycle on a remote server/hpc batch queue?

- While exposing the very SAME experience of running a pod on the cloud resources
- Meaning that the API layer exposed is the “normal” set of K8s apis

7

N.B. We aim to use Kubernetes as the workhorse for
the “offloading”, NOT as the user interface though

The enabling technology

Virtual kubelet (VK):
“Open-source Kubernetes kubelet
implementation that masquerades as
a kubelet. This allows Kubernetes
nodes to be backed by Virtual Kubelet
providers”

Knoc project has been the trigger of our interest.

8

https://virtual-kubelet.io/
https://github.com/CARV-ICS-FORTH/KNoC

All in all the flow we want to achieve

9

Application responsibility

Infra responsibility

Currently working on

interLink
We extended the VK solutions with
a first draft of a generic API layer
for delegating pod execution on
ANY remote backend
k8s POD requests are digested
through the API layer (e.g. deployed
on an HPC edge) into batch job
execution of a container.

10
Custom plugins

https://github.com/interTwin-eu/interLink

Building the first prototype

- We have a first implementation
ready for a first round of
validation

- A standalone “remote docker run”
implementation for testing and
development

- A SLURM quick start installation of
interLink components

- Validated already on different pilot
systems (see later)

A development guide for creating custom
plugin (like the slurm one) is available.

11

What it takes from user/framework POV

12

- Virtual nodes are available as normal
nodes BUT

- They are not included into the unconditioned
scheduling

- Pods created by either users or
frameworks have to EXPLICITLY indicate
a k8s node affinity and toleration

- This is the intended behavior since those are
not general purpose resources, but rather
computing specific ones

- NO shared FS are available:
- Configmaps, secrets and empty dirs are the

only available volume kind

Status of pilot implementations

13

Infrastructure: the following sites were federated under a common K8s cluster deployed on
cloud resources

- Vega - EuroHPC
- Deployed interLink Slurm

layer on a VM on the edge
of the HPC

- Juelich
- Deployed “remote docker run”

interLink on a login node

Applications
- Oscar at Vega

- Serverless execution of a pod on Vega has been functionally tested
- A lot of useful feedback already → looking forward to the next round of iteration

- MLFlow at Juelich
- A ML container has been successfully delegated to docker on the login node at Juelich

Conclusions

● A first version of the interTwin offloading system has been prototyped
and the fruitful collaboration with Vega and Juelich represented a key
to the success for this early implementation
○ Along with the tests of real workflows

● Lessons learnt (technical):
○ Managing runtime environment in a transparent way is possible… but a challenge i.e.

■ volume and Apptainer/Singularity
■ Site resources access policies
■ FS permission etc..

● Next steps and priorities
○ Further integration and enhancements with Data-Lake (i.e. Rucio ecosystem)
○ Offloading integration with INDIGO-PaaS integration
○ Extend testbeds and pilots within interTwin communities

14

BACKUP

15

AuthN/Z 1/2

● The initial idea is a model where each k8s cluster admin is responsible
for authorizing access to the remote resources
○ On the remote side the HPC can allow connection only for “trusted” admins/VOs
○ Additional custom policies can be integrated at the plugin level

■ e.g. contacting IdP for additional user info
■ Requesting additional information from pod annotation (e.g. the username of the

payload owner)

16

https://oauth2-proxy.github.io/oauth2-proxy/

AuthN/Z 2/2

● Current implementation support generic OAuth2 access token via
Authorization header
○ Thanks to oauth2 proxy instantiated automatically on the edge service
○ it can be configured to accept connection only from services presenting a token with

a valid group claim (configurable) and audience

17

https://oauth2-proxy.github.io/oauth2-proxy/
https://oauth2-proxy.github.io/oauth2-proxy/

Orchestrating deployment on cloud

Compute Resource orchestration is a critical
feature to implement infrastructure federation
functionality

● to automate the deployment and setup of
user-defined services

● make decisions regarding provider selection

Identification of the best Cloud provider by
utilising a variety of features based on both static
and dynamic metrics.

● The static metrics can be defined in advance
● Dynamic information collected at runtime and

continuously updated.
18Intertwin enhancement

A key aspect…

How the cloud dynamic orchestration and federation integrates with the
offloading mechanism ?
● With interTwin we plan to enhance the orchestration system for the

workload offloading mechanism
○ on-demand deployed services will be automatically configured to offload payloads.

For the system to successfully implement the workload offloading mechanism, it is
essential to include and rely on a detailed information system that collects and
publishes information about the different heterogeneous providers in the
federation.
E.g. we plan to use the interLink APIs layer to send telemetry/traces

The overall configuration should be fully transparent to the end users. Keeping the
possibility to go “advanced mode” and tweak manually the desired parameters.

19

Status and plans

The design has been discussed and agreed (see the deliverable)

The plan is to start with a semi-manual setup
- We deploy services via PaaS orchestrator
- We configure the services (by hands initially) to offload

This is a procedure to be adopted on the pilots (see later)

A key is that WP6 and users start defining requirements (i.e. TOSCA
templates/Helm charts/whatever for the services to be deployed)

20

