

A blockchain-based Consent Management System for life science data management

<u>Barbara Martelli</u>, Davide Salomoni, Alessandro Costantini, Luca Giommi, Ana Velimirović

The Problem

- On 25th May 2018 a new European Union (EU) law came into effect: the General Data Protection Regulation (GDPR) with the aim of protecting EU individuals' privacy
 - EU individuals = whoever is on EU territory, not only EU citizens
- Many INFN life science research activities involve personal data processing related to healthcare patients and need to comply with the new norm
 - To address this issue, we have built EPIC Cloud (Enhanced Privacy and Compliance Cloud): an ISO 27001 27017 27018 certified partition of INFN Cloud adopting technical and organizational security measures that make it fit for processing personal data
- Among the rights of individuals, there are the rights To Be Informed, To Erasure and To Restrict Processing of personal data
 - We need to add functionalities to enable patients who provide personal data stored in EPIC Cloud to exercise their rights

The solution from an organizational process point of view

- To address the Data Sovereignty issue, the most frequent solution is to ask Data Subjects (in our case patients) to fill and sign a form named "Informed Consent" clearly stating
 - Purposes of data processing
 - Retention period
 - Who is the Data Controller and who is the Data Processor
- Any patient has the right to withdraw his consent at any time
 - In this case Data Controller and Data Processor must delete all his data immediately

The (partial) solution from a technical point of view

- To manage the Informed Consent workflow and lifecycle, the exploitation of a Consent Management System (CMS) is frequently proposed in literature
 - A CMS should enable data subjects to establish control over their data, giving access permission and audit the use of their personal data, withdrawing permissions and deleting their data
- However, even state-of-the-art CMS still suffer of lack of transparency
 - It is necessary to trust the CMS provider (usually a private company) for the effective deletion of data and compliance to GDPR
 - Trust is often based on the adoption of certification mechanisms (like ISO/IEC 27001), which foresees a third-party independent audit performed on a yearly basis

How to add transparency and trustworthiness to CMSs - The Blockchain

A way of enhancing transparency and trustworthiness to current CMS systems is the exploitation of blockchain technologies

- Distributed ledgers implemented as concatenation of data blocks in a growing chain of immutable elements
- The current value of all ledger values is called the World State (WS)

The chain is maintained by several actors exploiting a combination of

- cryptographic techniques
- consensus algorithms
- peer-to-peer communications
- game theory

Two main open-source blockchain platforms

- Access: permissionless
- Deployment: public
- Consensus algorithm: Proof of Stake (PoS)
- Development language: Solidity
- Distributed App (DApp): Smart Contract

Hyperledger Fabric

- Access: permissioned
- Deployment: private
- Consensus algorithm: Practical Bizantine Fault Tolerance (PBFT) or dynamic (Sawtooth)
- Development language: golang or JavaScript + Hyperledger Composer
- Distributed App (Dapp): chaincode

Both

FOSS backed by an international foundation

IBERGRID 2023

Ethereum and Hyperledger Fabric which is the best in our case?

We choose a mix of them: Hyperledger BESU

Hyperledger BESU: an Ethereum permissioned blockchain

- While Ethereum architecture (PoS, smart contracts, Solidity) is the most advanced, in our use case the public Ethereum blockchain (mainnet) has some drawbacks:
 - Users can be anonymous, while we need to identify, authenticate and give appropriate roles to all subjects accessing personal data
 - Performance are low and transactions can wait for several minutes to get committed -> eventual consistency
 - Transactions come with a cost: the coin is Ether (ETH) and you need conventional money to get it
- To overcome these limits, we are going to exploit Hyperledger BESU: a permissioned version of Ethereum blockchain that can be deployed in private environments

What is a DApp

- A DApp (Distributed Application) is an application built on a decentralized network that combines a smart contract and a Internet frontend user interface. It is:
 - **Decentralized** when DApps operate on Ethereum no one person or group has control, as it is an open public decentralized platform
 - **Deterministic** DApps perform the same function irrespective of the environment in which they get executed
 - **Turing complete** DApps can perform any action given the required resources
 - Isolated DApps are executed in a virtual environment known as Ethereum Virtual Machine so that if the smart contract has a bug, it won't hamper the normal functioning of the blockchain network
- On Ethereum and Hyperledger BESU DApps are written in the Solidity language
- Solidity is object-oriented, statically-typed and high-level, with syntax influenced by JavaScript and C++

9

https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application

What is a Smart Contract

- A smart contract is code that lives on the blockchain. It contains some business logic and a limited amount of data. The business logic is executed:
 - if specific criteria are met by data stored in the blockchain
 - If Participants in the blockchain run the smart contract
- You can think of it as a DApp's backend
 - It's a collection of code (its functions) and data (its state) that resides at a specific address on the blockchain
- Once smart contracts are deployed on the blockchain network, you can't change them

First step: make available a DApp development environment on INFN Cloud

Ethereum environment for developers: scaffold-eth

IBERGRID 2023

Deploy Scaffold-eth via INFN Cloud

- Scaffold-eth containerization
 - To be portable and reusable
 - Contracts on github repo: every time a contract is created or modified, it will be automatically updated in Scaffold
- Scaffold and Nginx integration
 - Scaffold-eth and Nginx have been integrated in a docker-compose file
 - Nginx is taking care of the correct proxy redirections. It will provide also TLS termination as a further step
- Scaffold-eth deployment customization
 - TOSCA template has been properly customized in order to deploy scaffold-eth application within the INFN Cloud infrastructure

ų	master - scaffold-eth / packages / hardhat / contracts / YourContract.sol			
27 lines (20 sloc) 761 Bytes				
1	pragma solidity >=0.8.0 <0.9.0;			
2	//SPDX-License-Identifier: MIT			
3				
4	<pre>import "hardhat/console.sol";</pre>			
5	// import "@openzeppelin/contracts/access/Ownable.sol";			
6	<pre>// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol</pre>			
7				
8	contract YourContract {			
9				

👌 docker-	compose.yaml
1	version: '3.8'
2	
3	services:
4	scaffold-eth:
5	<pre>container_name: scaffold-eth</pre>
6	<pre>image: anavel/scaffold-eth:5.1</pre>
7	restart: always
8	
9	nginx:
10	container_name: nginx
11	<pre>image: anavel/nginx:v2</pre>
12	ports:
13	- "8080:8080"
14	- "8545:8545"
15	restart: on-failure
16	depends_on:
17	- scaffold-eth

Scaffold-eth "as a service" tool on INFN Cloud

Scaffold-eth can be deployed on-demand using the INFN Cloud dashboard and related graphical environment

INFN Cloud Dashboard Deployments - Ac	dvanced - External Links -			infn-cloud-catchall 👻 👯 Luca Giommi 👻
	INFN Cloud object storage	Notebooks as a Service (NaaS)	INFN Cloud Registry	
	4	Jupyter	HARBOR	
	On-demand Services:			
	Virtual machine	Docker-compose	Run docker	
	·///	Ţ,	docker	
	Elasticsearch and Kibana	Kubernetes cluster	Spark + Jupyter cluster	
	kibana elastic		Spark	Scaffold-eth deployment
	Jupyter with persistence for Notebooks	Sync&Share aaS	Scaffold-eth	
		<i></i>	T	

IBERGRID 2023

Access Scaffold deployment

Second step: define the CMS architecture and the Informed Consent workflow

Actors

Patient

GDPR Role: Data Subject

- Give data to Hospital
- Sign the Informed Consent
- Revoke Consent
- Audit the CMS

Hospital

GDPR Role: Data Controller

- Collect patients' data
- Appoint INFN Cloud as Data Processor
- Data Consumer: analise Patients' data exploiting the Life Science Datalake

Hospital Ethic Committee

Role: Whatchdog

- Assign Roles on
 CMS and datalake
- Audit CMS

INFN Cloud

GDPR Role: Data Processor

- Get data from hospitals and manage them
- Develop and manage the CMS
- Develop and manage the life science datalake

Consent Management System

- A CMS supports users in controlling who can access their personal data and audit who has accessed their personal data by adding access control and transparency
- Ideally a CMS shouldn't be controlled by any individual/company, that's why often blockchain approaches are considered for its implementation
- A good practice in CMS is to decouple the consent layer from the data management layer
- A CMS must be tamper-proof and auditable

Informed Consent Workflow

- Patients grant or withdraw consent to data consumers (doctors, researchers, insurance companies, ...) acting in particular roles
- Watchdogs (Ethic Committee) assign and revoke data consumers' roles
- Given their roles, data consumers request permission to access data
- The CMS must determine whether such permission can be granted, based on patients consent
- A CMS must be tamper-proof and auditable

Informed consent smart contracts

The Solidity code for a basic consent management smart contract is here: https://github.com/bmartell/sc-dcms

The code is based on [3] We added *Individualoriented word state* (IWS) as suggested by [1]

OLIDITY COMPILER 🚽 🗸 🔾	🕨 🔍 🎕 🏠 Home 💲 give-consent.sol 💲 1_Storege.sol 📧 hardbat.config.js 💲 consent-contract.sol 🔹 🕽 15-consent-management.sol 🗙
COMPLER + 🗎	1 // SPDX-License-Identifier: GPL-3.0
0.7.6+commit.7338295f :	2 pragma solidity >=0.4.16 <0.8.0;
include nightly builds	3 A //incent " (UserDesGlaMer es]".
Auto comple	4 //import ./UserProfilengr.sol ; 5 //import "/PersonalDataMar sol";
Hide warnings	6
Advanced Configurations >	8 *@Title : Dynamic Consent Managment Smart Contract
- complicito-consene-managa.	10 * Email: mlecjm(a)korea.ac.kr
Compile and Dup project i 0	11 * Intelligent Blockchain Engineering Lab, Korea University
	12 * Changed by Barbara Martelli
	13 * Added support for Individual-oriented word state (IWS)
ConsentAgreementMgr (ib-consent-r:	14 " Dased on Consentio DUI: 10.1109/1CBC48266.2020.9169452
	15 */
Publish on lpfs 👼	17
Dablish an Suman A	18 contract ConsentAgreementMgr{
Publish on Swarm	
Compilation Details	20 event usageOperationSet(string _uOpCode, string _uOpDescription, address indexed _setBy);
0.0	21 event consentRequestCreated(string _consentReqID, address indexed _requestedBy, address indexed _dataSubject
	22 event consentAgreementMade(string _agrNum, string _consentReqID, bool _isValid, address indexed agreedBy);
	23 event consentAgreementUpdated(string _agrNum, uint256 _lastUpdate, address indexed updatedBy);
	<pre>24 event consentAgreementExpired(string _agrNum, bool _isvalid, bool _isExpired, address indexed approvedBy);</pre>
	27 //Consent Request Contract Structure
	28 struct ConsentContract{
	29 string consentRegID;
	30 address dataSubjectID;
	31 address requestedBy;
	32 string resourceID;
	33 string purposeCode;
	34 uint256 creationDateTime;
	35 String uopcode;
	37 string whatchDogTD:
	38 uint256 timeID:
	39 RequestStatus;
	40 LawsAndRegulations legislationBasis;
	41 string territory;
	42 string contractVersion;
	43 }
	44 AF U Connect Demust
	45 // Consent Request
	40 enum Requestations
	4/ Reducated, Agreed, Stened, Fubrished,

Expired, Withdrawn,

tID);

Conclusions (1/2)The Big Picture: toward an open-source genomic datalake for research

INFN Cloud technologies are already the basis for several research projects at national and **European level**

- Harmony Alliance
- Health Big Data

IBERGRID 2023

 Several national projects funded under the EU Recovery and Resilience Plan

We think that **blockchain** technologies will be of paramount importance to enhance transparency, auditability and trust at various architectural levels

Conclusions (2/2)**INFN Cloud Roadmap to exploit** Blockchain technologies in life science applications

- **BCDEaaS**: on-demand deployment of Blockchain Development Environments 1. based on Ethereum and Scaffold-eth -> Done!
- **BCaaS**: on-demand deployment of Blockchain general purpose, permissioned 2. blockchain enviroments based on Hyperledger BESU -> work in progress
- **BC-CMSaaS**: on-demand deployment of blockchain-based Consent Management 3. Systems built on top of the BCaaS functionality -> work in progress
- **BC-GIMSaaS**: Genomic Information Management System built on top of the BCaaS 4. functionality and exploiting the BC-CMS to manage patient consent -> future work

Main References

- [1] Rishav Raj Agarwal et al. "Consentio: Managing consent to data access using permissioned blockchains". In: 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE. 2020, pp. 1–9.
- [2] Darine Ameyed et al. "Blockchain Based Model for Consent Management and Data Transparency Assurance". 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C)
- [3] Merlec MM, Lee YK, Hong SP, In HP. "A Smart Contract-Based Dynamic Consent Management System for Personal Data Usage under GDPR". Sensors (Basel). 2021 Nov 30;21(23):7994. doi: 10.3390/s21237994. PMID: 34883997; PMCID: PMC8659597
- <u>https://github.com/scaffold-eth/scaffold-eth</u>
- <u>https://docs.scaffoldeth.io/scaffold-eth/</u>
- https://www.cloud.infn.it/