
 The SQA as a Service
(SQAaaS) platform

Pablo Orviz
orviz@ifca.unican.es
IFCA-CSIC

Samuel Bernardo
samuel@lip.pt
LIP

Adopt and get recognition for quality
practices in software development

Bring over novel quality
practices close to

researchers

3

Acknowledge & certify
achievements in terms of

quality

Culture Credit

Source
code Service Data (FAIR)

The SQAaaS platform

Bring over novel quality
practices close to

researchers

4

Acknowledge & certify
achievements in terms of

quality

Pipelines or Workflows Digital badges

Culture Credit

Quality
Assessment

and
Awarding

DevOps
(CI/CD) Agile

Open
Badges

Pipeline as
a Service Source

code Service Data (FAIR)

The SQAaaS platform

Bring over novel quality
practices close to

researchers

5

Acknowledge & certify
achievements in terms of

quality

Source
code Service Data (FAIR)

Pipelines or Workflows Digital badges

Culture Credit

Quality
Assessment

and
Awarding

DevOps
(CI/CD) Agile

Open
Badges

Pipeline as
a Service

QA criteria (standards)

The SQAaaS platform

● Automated
Deployment

● API Testing
● Integration Testing
● Functional tests
● Performance tests
● Security
● Documentation
● Policies
● Support
● Monitoring
● Metrics

• Documents are openly managed through github
repositories:

• https://github.com/indigo-dc/sqa-baseline

• https://github.com/EOSC-synergy/service-qa-baseline

● Code Accessibility
● Code Workflow
● Code Management
● Code Review
● Licensing
● Code Metadata
● Documentation
● Code Style
● Unit Testing
● Security
● Automated

Deployment
● Semantic Versioning
● Test Harness
● Test-Driven

Development
● Automated Delivery

10.20350/digitalCSIC/12543 10.20350/digitalCSIC/12533

Source code Services

Quality standards

https://github.com/indigo-dc/sqa-baseline
https://github.com/EOSC-synergy/service-qa-baseline

Quality standards: criticality

Covers 3/6 categories from the EOSC Task Force:
“Ensure Research Software Quality”
(EOSC-SWRelMan, EOSC-Test, EOSC-SrvOps)

Quality standards: criticality

https://sqaaas.eosc-synergy.eu

0201 Pipeline as a
Service

Quality
Assessment &
Awarding

The SQAaaS portal

https://sqaaas.eosc-synergy.eu

Why
assessment

is important?

Adopt quality conventions to ease the adoption
and sustainability of the digital object (source
code, service and/or data)

What
awarding

gives?

Digital badges contributes to reputation-building
and crediting. They include metadata with
references to the associated assessment results,
improving the reusability and reproducibility of
the awarded software releases.

Quality assessment & awarding

Types i) Source code, ii) (web) service
iii) Data FAIRness

SQAaaS & Digital Twins

Event-driven V&V
● In response to events generated by code platforms (e.g. push, pull request,

tag creation)
● Requires: integration with code platforms (GitHub Actions, GitLab CI)
● Suitable for: V&V of the whole workflow

As step within a DT workflow
● WfMSs trigger SQAaaS as part of the workflow execution
● Requires: integration with WfMS solution
● Suitable for: more granularity on the V&V work

Quality assessment and awarding

● Limited (so far) to fixed
QA assessments, i.e.
source code

● Will be extended to
support the concept of
custom assessments

Event-driven (workflow) validation in SQAaaS
Quality assessment and awarding

SQAaaS validation within Workflow
Quality assessment and awarding

● CWL (InterTwin)
● COMPSs (DT-GEO)
● Apache Airflow

WfMS

New interface: SQAaaS CLI

● Interaction with SQAaaS API without the burden of required arguments encoding
● Better integration with CI automation services and workflow management

systems
● Provides an implementation for the available SQAaaS API features
● Still in development and first release expected during October

SQAaaS deployment automation

● GitOPS deployment model using ArgoCD implementation.
● Helm charts to deploy SQAaaS services over Kubernetes with code continuously

tested over SQAaaS CI/CD.
● Kubernetes cluster management using Kubespray across multiple infrastructure

platforms using Ansible and other supported provisioning tools.
● Jenkins Operator configuration as code approach to manage Jenkins pipeline

system over Kubernetes, providing a solution for the integration with the GitOPS
deployment model.

CD Sync Kubernetes

Deployment state repo

Deployment code repo

Developers and
operators Jenkins

Operator

SQAaaS CI New image pushed on a registry

U
pd

at
e

st
at

e
in

de
pl

oy
m

en
t r

ep
o

Additional Jenkins
instances to run
SQAaaS JePL
pipelines

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

01 Source code assessment

02

Demo
Overview of service and
FAIR assessment

Quality assessment & awarding
Fixed assessments

From the EOSC-Synergy+KIT software stack:
https://github.com/EOSC-synergy/ibergrid-perf

Quality assessment of source code: our use case

Let’s trigger QA assessment on the SQAaaS platform

https://github.com/EOSC-synergy/ibergrid-perf
https://sqaaas.eosc-synergy.eu

QA assessment in SQAaaS relies on existing open-source tools

● Only git is supported as VCS tool
○ Major requirement: QA assessment is not performed for other VCSs

■ No real plans to support additional VCSs in the near future
● Both public and private repositories can be assessed

○ Private repositories are supported through personal tokens (GitHub, GitLab)
○ Work-in-progress: Vault secret management (best)

● Programming languages: Python, Go(lang), Ruby, Java & Javascript
○ Others/Misc: JSON, Dockerfiles, ..
○ Support for new programming languages upon internal roadmap/user request (e.g. C++)

Capabilities of QA assessments

sqaaas@ibergrid.eu

or through issues in:
● SQAaaS main repo https://github.com/EOSC-synergy/SQAaaS/issues/new/choose
● SQAaaS’ tooling repo https://github.com/EOSC-synergy/sqaaas-tooling/issues

https://marketplace.eosc-portal.eu/services/secret-management-service
mailto:sqaaas@ibergrid.eu
https://github.com/EOSC-synergy/SQAaaS/issues/new/choose
https://github.com/EOSC-synergy/sqaaas-tooling/issues

Python Golang Ruby Java JavaScript JSON Dockerfile

Code
Style
(QC.Sty)

flake8 staticcheck rubocop checkstyle stylelint jsonlint hadolint

Security
Static
Analysis
(QC.Sec)

bandit gosec

Markdown reStructuredText

Documentation (QC.Doc) markdownlint restructuredtext-lint

Supported tools: code management, style, security
and documentation

Code Management
(QC.Man, QC.Acc)

Code Style and
Security
(QC.Sty, QC.Sec)

Documentation
(QC.Doc)

Some QA criteria must be addressed by specific tools…

Bronze Silver Gold

Accessibility (QC.Acc) ✔ ✔ ✔

Code Management (QC.Man) ✔

Code Metadata (QC.Met) ✔ ✔

Code Style (QC.Sty) ✔

Code Workflow (QC.Wor) ✔

Delivery (QC.Del) ✔

Documentation (QC.Doc) ✔ ✔ ✔

Licensing (QC.Lic) ✔ ✔ ✔

Security Static Analysis (QC.Sec) ✔

Unit Testing (QC.Uni) ✔

Versioning (QC.Ver) ✔ ✔

https://indigo-dc.github.io/sqa-baseline/

QA badges for source code: QA criteria mappings

https://indigo-dc.github.io/sqa-baseline/

QA badges for services and data

Bronze Silver Gold

Deployment (SvcQC.Dep) ✔ ✔ ✔

API testing (SvcQC.API) ✔

Integration testing (SvcQC.Int) ✔ ✔

Functional testing (SvcQC.Fun) ✔

Performance testing (SvcQC.Per) ✔

Documentation (SvcQC.Doc) ✔ ✔ ✔

Security Dynamic Analysis
(SvcQC.Sec)

✔

https://eosc-synergy.github.io/service-qa-baseline/

● Service assessment: only bronze badges
○ Major requirement: means for automated

deployment (IM, Kubernetes, ..)
● FAIR assessment through FAIR-EVA tool

○ Added value: identify critical FAIR indicators

https://indigo-dc.github.io/sqa-baseline/

About digital badges

● Digital badges issued by SQAaaS are based on
Open Badges specification

● Provide additional metadata that is “baked” into
the badge

○ In particular, Evidence property contains
relevant info about the assessment process
(such as links to build info, logs)

● Are shareable and verifiable
○ Issuer: eosc-synergy

Badges for source code: how can they be shared?
AND/OREOSC-Synergy badge image shields.io badge image

Required Markdown code is generated to be copy/pasted in your README

https://github.com/eosc-synergy/sqaaas-api-server

About digital badges

Pipeline as a Service

01 Improve your software with
SQAaaS assessment

02

JePL: improve your CI
pipeline

DemosWhat is a CI/CD pipeline?
CI/CD pipelines automatize the CI/CD work so that it
can be executed for every change in the code

CI/CD stands for Continuous Integration and Delivery
● Aims at improving the overall quality of the

software during the development life cycle by
its continuous (every change) verification and
validation (V&V)

● meets both the functional (behavior-driven) and
non-functional (usability-oriented) requirements

SQAaaS integration with git
flow development process

03

Improve your software with
SQAaaS assessment

1.1 Review QC.Ver report

1.2

Run SQAaaS assessment
and check the silver badge

Steps Correct the semantic
versioning issue

1.3

01

 Review QC.Ver report1.1

● Project has no tags yet
● We only need to create

the first release tag

● Complying with
semantic versioning,
we are going to create
the tag 1.0.0

 Correct the semantic versioning issue1.2

Use Github
web interface
and select
branch main

Create 1.0.0 tag to comply with
semantic versioning

Run SQAaaS assessment and check the
silver badge

1.3

Run the assessment again
and check that QC.Ver
passed the test

Pipeline as a Service

01 Improve your software with
SQAaaS assessment

02

JePL: improve your CI
pipeline

DemosWhat is a CI/CD pipeline?
CI/CD pipelines automatize the CI/CD work so that it
can be executed for every change in the code

CI/CD stands for Continuous Integration and Delivery
● Aims at improving the overall quality of the

software during the development life cycle by
its continuous (every change) verification and
validation (V&V)

● meets both the functional (behavior-driven) and
non-functional (usability-oriented) requirements

SQAaaS integration with git
flow development process

03

SQAaaS integration with git
flow development process

2.1
SQAaaS CI/CD and Git Flow
integration

2.3

Merge the results into the
production branch

Steps
Create a pipeline configuration
to support the development

2.4

02

Run the SQAaaS
assessment and check
the gold badge

2.5

2.2
Review QC.Sty and QC.Sec
report

SQAaaS CI/CD and Git Flow integration

Git clone
workspace or
use Github UI

Create a new
branch to apply
changes

Commit the QC.Sty
and QC.Sec corrections

Push new
branch to
remote and
create a
Github Pull
Request (PR)

Review SQAaaS report

Create a new
branch if any
improvement
required

If badge = gold
accept PR

2.1

Review QC.Sty and QC.Sec report2.2

Bandit tool found an issue:
- filename:
"./scripts/sandbox.py"
- issue_text: "Requests call
with verify=False disabling
SSL certificate checks,
security issue."

Flake8 tool found issues:
- ./scripts/sandbox.py:9:80:
E501 line too long
- ./scripts/sandbox.py:27:98:
E741 ambiguous variable
name 'l'
- ./scripts/sandbox.py:47:5:
F841 local variable 'user' is
assigned to but never used

Here we will ignore this
issues within flake8

Create a pipeline configuration to
support the development

2.3

QC.Sec:
● Add Bandit tool with same

options as applied in the
assessment test

Create a pipeline configuration to
support the development

2.3

QC.Sty:
● Add flake8 tool with same

options as applied in the
assessment test

Create a pipeline configuration to
support the development

2.3

Download pipeline
configuration files
or
Create a Github Pull
Request (PR) to merge
the configuration files

Merge the results into the production
branch

2.4

Faster pipeline, since it
only runs the required
development targets,
instead of the complete
assessment.

Merge the results into the production
branch

2.4

Run the SQAaaS assessment and check
the gold badge

2.5

Let’s trigger QA assessment on the SQAaaS platform

https://sqaaas.eosc-synergy.eu

Run the SQAaaS assessment and check
the gold badge

2.5

● The SQAaaS assessment validated the
software and updated the badge.

● The SQAaaS pipeline can be used in
parallel to verify code quality with
available tools following the git flow
development.

● Verification and validation before pushing
to target repository or branch.

Pipeline as a Service

01 Improve your software with
SQAaaS assessment

02

JePL: improve your CI
pipeline

DemosWhat is JePL?
JePL is the core component of SQAaaS.

JePL translates the quality criteria into Jenkins pipelines
using a shared library:

● Human readable YAML format configuration
files to describe the software testing tools
configuration and the composers that delivers
the required execution environments for the
supported platforms

● Dynamic pipelines generator over an
automation system (Jenkins open source
automation server)

SQAaaS integration with git
flow development process

03

JePL: improve your CI pipeline

3.1
Add custom JePL
configuration files

3.3

Steps
Pipeline automation with git
flow operations

03

3.2
Edit Jenkinsfile to add custom
configs

Add custom JePL configuration files3.1

● Get config.yml and
docker-compose.yml from the
initial repository state.

● Add configuration files with their
name suffixed with “_custom”.

● Set deploy_template at
config_custom.yml.

Edit Jenkinsfile to add custom configs3.2

● Add a new stage with the
JePL configuration file

● Also added an environment
variable Jenkins side to pull
private docker images

Pipeline automation with git flow
operations

3.3

● Pipeline is automatically triggered with a new push into PR branch
● Processed pipeline with stages from both JePL configurations.
● If first custom configuration fails, the second will not run, sparing resources.

Takeaways

● SQAaaS fulfills a twofold objective wrt your digital objects:
a. Take credit of quality achievements through metadata-empowered digital

badges
b. Build CI/CD environments for preserving quality attributes within digital

object’s lifecycle (development, staging & production), implemented through
git flow model

● Next-up on SQAaaS:
a. Evolving towards covering workflow-based DT validation (custom

assessments)
b. New CLI interface
c. On-premises automated deployment (privacy, close-to-data assessment)

Thank you for your
attention

Q&A time

Pablo Orviz
orviz@ifca.unican.es
IFCA-CSIC

Samuel Bernardo
samuel@lip.pt
LIP

