

INCD Software Management

Joao Pina, Joao Martins

LIP Distributed Computing and Digital Infrastructures group

INCD - Infraestrutura Nacional de Computação Distribuída

INCD is a **digital infrastructure**:

- LIP Technical coordination
- Goals:
 - Provide computing and data services for the research comm
 - Computing Services:
 - Cloud.
 - HTC and HPC (farm)

INCD operations centers in 2023

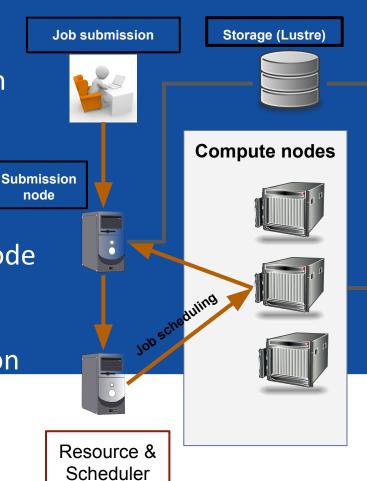
INCD-A @ LNEC in Lisbon
HPC / HTC / Cloud / Federation
6000 CPU cores
5 Petabytes online raw
100 Gbps
Includes the WLCG Tier-2

INCD-B @ REN in Riba-de-Ave (DECOMMISSIONED in 2023) HPC / HTC 2600 CPU cores 384 Terabytes raw

INCD-L @ LIP in Lisbon
Tape storage
1 Petabyte backups
10 Gbps

INCD-D @ UTAD in Vila Rea
(BEING DEPLOYED)
HPC / HTC / Cloud / Federation
5000 CPU cores + IB HDR200
4 Petabytes online raw

1 Gbps



INCD-C @ UC in Coimbra (BEING RENEWED)

Tape storage expansion 20 Petabytes 10 Gbps

Computing Farm:

- Access through a submission node with ssh keys authentication
- Applications run on compute nodes
- Compute nodes access through job scheduler
- Storage shared between submission node and compute nodes
- Hardware architecture common to submission node and compute nodes on new AlmaLinux 8

ctrl (slurm)

Software: Traditional Cluster Stack

Software

Applications (users)

Runtime Interprocess Communications (MPI)
Resource and Job management (slurm, lustre)

Operating System (linux)

Software: System software

- Operating system:
 - Main distributions: Centos 7 and Alma Linux 8
 - Computing servers;
 - Storage (LUSTRE);
 - Cloud (OPENSTACK);
 - Kubernetes
 - Virtualization (KVM)
 - And many other services.
- Installation and service configuration;
 - Kick Start recipes for server common installations (WN, Virtualization, Storage)
 - Moving to ansible receipts for services (slow move)

Software: System software

- Runtime Interprocess Communications (MPI)
 - OpenMPI and MVAPICH2
 - INCD-A: 56 Gbps (infiniband)
 - INCD-D: 200 Gbps (infiniband)
 - GRID and local users: 1Gbps-10Gbps (copper)
- Storage provisioning through Lustre
 - INCD-D: 200 Gbps (infiniband)
 - INCD-A, GRID and local users: 1Gbps-10Gbps (copper)
 - 3.5 PB aggregate
- Resource and Job management:
 - Slurm
 - kubernetes (new)

Software: Software Applications

- Multi user environment require a flexible setup:
 - Users may require different conflicting libraries and versions of the same application
 - Users may require multiple setups for the same application
 - Heterogeneous hardware architectures may require multiple builds
- We handle this issues with Environment Modules:
 - CentOS 7: package environment-modules
 - AlmaLinux 8: package Imod
- Module files customization for local usage over CVMFS repository mounts:
 - CentOS 7: /cvmfs/sw.el7/modules
 - AlmaLinux 8: /cvmfs/sw.el8/modules

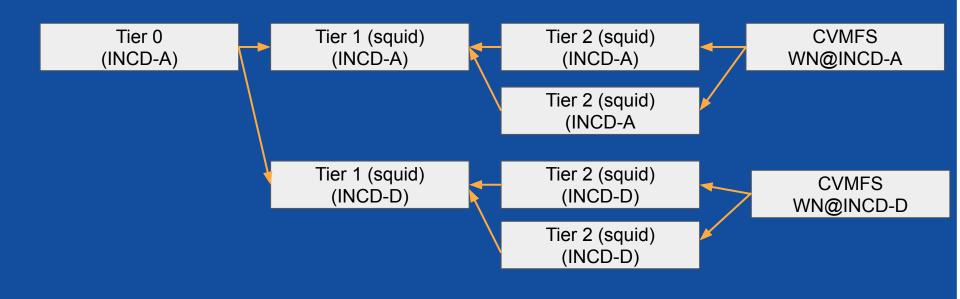
Software: Software Applications

- CernVM File System (CernVM-FS) is a read-only file system on which files and file metadata are downloaded on demand and trough standard HTTP.
 - Cache quota management;
 - Possibility to split a directory hierarchy into sub catalogs at user-defined levels
 - Capability to work in offline mode provided that all required files are cached
 - File system data versioning
 - Dynamic expansion of environment variables embedded in symbolic links
 - Support for extended attributes, such as file capabilities and SElinux attributes
 - Automatic mirror server selection based on geographic proximity
 - Automatic load-balancing of proxy servers
 - Efficient replication of repositories
 - Possibility to use S3 compatible storage instead of a file system as repository storage

Software Applications

- This strategy based on CVMFS allows to:
 - distribute the software and environment from a single central repository to multitude of clients spread locally and geographically
 - have good scalability, reliability and availability
 - easily maintenance of a complex environment
- CVMFS drawbacks:
 - low I/O performance
 - not suitable to share data sets, especially big
 - can not ensure privacy of restricted applications

Software Applications


- Customized per:
 - Operating System: CentOS 7, AlmaLinux 8
 - Community
 - Compiler: gcc, intel, aoc, cuda
 - Hardware architecture
- Over 300 different Software/Compilers builds
- Huge complexity and hard to maintain
- module examples:
 - module avail

Software Build

- Whenever possible we make a native build of applications on target hardware using:
 - o configure, cmake and make utilities
 - spack package manager
 - opam package manager
 - dockers/udocker (<u>https://github.com/indigo-dc/udocker</u>) for applications demanding different operating systems
- Software installation and configuration base directory over the CVMFS repositories mount points
 - since this is a read-only directory we bind the path to a local directory with read-write permissions, for example:
 - mount –bind /tmp/app /cvmfs/sw.el8/gcc85/app/<version>
 - when ready we copy the installation tree to stractum 0 for publication

Software Management Topology

INCD in numbers:

- 2 x Tier 0 (1 TB)
- 4 x Tier 1 (2 INCD-A + 2 INCD-C)
- 8 x Tier 2 (5 INCA-A + 3 INCD-C)
- 150 x WN's (INCD-A + INCD-C)

Resume

- SQUID and CVFMS used for long time to deploy Software to the Worker nodes over several clusters (HTC + HPC)
 - Easy to maintain
 - Resilient
- Future
 - Use S3 compatible storage instead of a file system as repository storage
 - Cloud and Kubernetes

End

Questions?