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The Standard Model is the most
successful theory of particle physics to
date, but there are many open questions.
Research on this topic can be assisted by
using anomaly detection methods on
colliders’ data, finding possible signals
that might hint at new physics.
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SIMULATED DATASETS

Monte Carlo events were simulated for all processes in the background.
The signals used are examples.

Resonant Dark Matter Dark Matter production by Gluino pair (S3)
particles (51) two Higgs doublets (52)

Heavy Vectorial Triplet (S4)



Supervised:

e Deep Neural Networks

Methods used

Semi-supervised:

e |solation Forest (w/o

31 features used - some examples:
MET, 4-momentum jets and large jets, HT
(scalar momentum sum),...

contamination)
e Autoencoder
e Variational Autoencoder

(w/0 contamination)



SUPERVISED Hidden
LEARNING - NEURAL
NETWORKS

Itts an  algorithm  whose
architecture comprises layers
with many neurons, leading to
an output. Labels are used for
training.

[(z) = g(Wiz + b))

, 1
minwsy~ ) [yilog,[NN(xi, W, b)]+

(1 —y;)log,[1 — NN(x;, W, b)]]
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e Neural Network's
performance might degrade

when applied to other

WHY PREFERING SEMI- signals.
SUPERVISED TO e Real datasets aren't
SUPERVISED METHODS? ballad

e Semi-supervised methods
are independent and offer

great performance.



SEMI-SUPERVISED
LEARNING -
ISOLATION FOREST

Isolation Forest creates tree
structures that can represent
recursive  partitioning during
learning. The path length of the
trees averaged over a forest of
such random trees is used to
measure the anomaly score.




ISOLATION FOREST -
RESULTS

Model score - Isolation Forest ROC curve - Isolation Forest
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ISOLATION FOREST - RESULTS
(CONTAMINATED)

Model score - Isolation Forest contaminated ROC curve - Isolation Forest contaminated
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SEMI-SUPERVISED

L EARN I N G = LATENT SPACE
AUTOENCODER
The Autoencoder is a deep DECODER
architecture that learns to
compress (encode) and then
decompress (decode) data
through a bottleneck called the

latent space.

INPUT - x OUTPUT - X

1 N

loss = minyyy, = Z IAE(x;, W, b) — x;||°
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SEMI-SUPERVISED
LEARNING -

VARIATIONAL
AUTOENCODER

The Variational Autoencoder
(VAE) is an AE whose training is
regularised to avoid overfitting
and ensure that the latent space
has suitable properties that

enable the generative process.
2=Uy+0,0/C

loss = MSE(X, X) + BKL[N(u,, o), N(O, 1)]
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MSE reconstruction loss - Variational Autoencoder
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RESULTS (CONTAMINATED)

VARIATIONAL

AUTOENCODER -

Model score - Variational Autoencoder contaminated
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Isolation Forest cont.

Variational Autoencoder

Variational Autoencoder cont.

ORRELATION BETWEEN
METHODS

Correlation Between AD algorithms on S1
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CORRELATION BETWEEN
METHODS

Correlation Between AD algorithms on S3 Correlation Between AD algorithms on S4
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AUC SCORES OF THE
METHODS

AUC scores of Semi-supervised AD algorithms
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CONCLUSION

Distinct algorithms for anomaly detection are highly effective in isolating
diverse types of BSM physics. Furthermore, these algorithms can
complement each other in unsupervised searches for new physics,

making them potential tools in particle physics research.
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