

1/18

ELECTRONICS ADAPTATION FOR SCINTILLATION DOSIMETER

David Encarnação Faculdade de Ciências da Universidade de Lisboa

Project Supervisors: Duarte Guerreiro, João Gentil, Jorge Sampaio

3

∃ >

5900

Scintillation Dosimeter	3
Data Acquisition	5
Radiation Sources	7
Absorber	10
Experimental Measurements	11
Future Work	15
Results	16
Conclusion	18

SCINTILLATION DOSIMETER

The scintillation dosimeter is a radiation detector currently in development in LIP at FCUL. It consists of:

- ► A light tight case;
- An array of 64 scintillating plastic optical fibres with a 1mm diameter;
- ► 64-channel multi-anode PMT H8500C;
- ► SAMTEC-LEMO00 electronic interface for output.

SCINTILLATION DOSIMETER

The detector and the fibre array within.

David Encarnação ELECTRONICS ADAPTATION FOR SCINTILLATION DOSIMETER

4/18

For measurements to be made, a circuit was setup in the lab at LIP:

- ► Individual channel LEMO00 output;
- ► Signal discriminator;
- ► NIM ECL translator;
- ► TDC board (TRB3);
- ► Computer for TRB3 GUI.

DATA ACQUISITION

< 17 ▶

 $\exists \rightarrow +$

900

6/18

RADIATION SOURCES

Two radiation sources have been used for testing:

Strontium-90 β^- radiation

X-Ray Emitter X-Ray radiation

STRONTIUM-90

nac

8/18

ъ

Sr-90 Decay Scheme and Emission Spectrum (Source: researchgate.net)

David Encarnação ELECTRONICS ADAPTATION FOR SCINTILLATION DOSIMETER

X-RAY EMITTER

X-Ray Emitter Spectrum (Bremsstrahlung) (Source: SpekCalc Software)

ABSORBER

A PMMA absorber was also developed for trials with protons:

- ► Sr-90 tests yielded no results as electrons are absorbed;
- ► X-Ray tests were possible.

EXPERIMENTAL MEASUREMENTS

While analysing measurement data the following have to be considered:

- ► Dark current-induced noise;
- ► Channel signal sensibility;
- ► Signal reflection-induced noise;
- ► TRB3 reading errors.

DARK CURRENT

Measured with PMT HV at 1000V when only exposed to background radiation.

クへで 12/18

CHANNEL SENSIBILITY

つへで 13/18

TRB3 ERRORS AND SIGNAL REFLECTIONS

Signal Function	TRB3	Relative
Generator Frequency (Hz)	Registered Value (Hz)	Deviation
10	10,67	6,7%
100	106,33	6,3%
1000	1069,67	7,0%
100000	108112,33	8,1%
1000000	1072808,00	7,3%
1000000	10650216,67	6,5%
2000000	21640009,67	8,2%

- A TRB3-compatible external clock is currently being tested.
- In the future, multiple improvements may be considered for implementation :
 - ► Fibre array grid;
 - ► Using thinner fibres;
 - ► Using an alternative photodetector.

RESULTS

Average =
$$80,31$$
Hz Avg. Dev. = $2,47$ Hz
Maximum = $152,47$ Hz Minimum = $10,55$ Hz

つへで 16/18

ъ

3

RESULTS

Average = 119895Hz Avg. Dev. = 946Hz Maximum = 199852Hz Minimum = 43189Hz

つへで 17/18

18/18

- The dosimeter is currently working and well-along in its development.
- It requires more calibration and may require some more work as previously discussed.
- It already achieves its purpose of providing reliable radiation detection measurements along each vertical milimeter wide-strip of its detection area.

