AI

FOR FILM CHARACTERIZATION

USING AEL

Bárbara Galindo

Supervisors: Raquel Nunes, Pamela Teubig, Tomás Sousa

What do we want to characterize?

Thickness of the Target

I started with this as it might be the simplest value for the AI to

guess.

An human who saw the graphic of the spectrum would know something about the homogeneity just looking how neat are the peaks. We want the AI to do that too.

Two targets with different materials and thickness can create the same spectrum, so one of them has to be a known variable. The material is to be given as a

parameter.

Homogeneity of the target

How is the thickness being calculated?

It's a very precise method, but takes a lot of time

- Manual calibration with a reference spectrum
 - Representation of the spectrum
 - Searching for the start and end of the peaks
 - Interpretation of the results
- It is necessary to know some values such as density or stopping power

Why using

01 We don't need a real person to do all this process

02 Fast results

03 Very easy to use

05

04

AI

Good way to get intuitive results

Eliminates middle steps, we get directy the results

How does it work

Number of layers and neurons

Epocs: how much the data is "seen"

Learning rate

Activation functions

Alpha MC

When training AI we need big amounts of known, controlled data.

We use simulations

Alpha MC is a Monte Carlo program for simulations of fast alpha particle transport in complex geometries

We can desing our target by giving it's geometry and material to AlphaMc Then we run the simulation of the alpha particles colision with the target

Automation of AlphaMC

þ	v2.f90		call system ("chm
	program auto		
	integer, parameter :: n	_espectro = 1000	call system (time
	real, parameter :: gros	or_min = 100.d-7, grosor_max = 2000.d-7	call system ("rm -
	real*8:: grosor, in	cremento	call system ("rm -
	integer::i,j,k		
	real, allocatable::labe	1(:)	close(0,status="de
	allocate <mark>(</mark> label(n_espect	ro))	
	incremento = (grosor_ma	x - grosor_min)/n_espectro	open(0 file="nombr
	grosor=0		write(0,*) program
	do i=1,n_espectro		write(0,*)" or
	grosor = grosor + i	ncremento	write(0,*)" ca
	open(0,file="geom.f	")	write(0,*)"end pro
	write(0,*)"	module geometry_mod"	
	write(0,*)"	integer, parameter :: nmaterial=4"	
	write(0,*)"	real*8, parameter :: rcha=1. "	
	write(0,*)"	real*8, parameter :: hcha=10."	
	write(0,*)"	real*8, parameter :: zwcha=0.d0"	call system("gfort
	write(0,*)"	real*8, parameter :: xcha=0.d0"	call system("./nom
	write(0,*)"	real*8, parameter :: ycha=0.d0"	
	write(0,*)"	real*8, parameter :: zcha=zwcha+hcha/2.d0"	close(0, status="de
	write(0,*)"	integer :: idcha"	label(i)=grosor
	write(0,*)"	real*8, parameter :: rtar=1.d0"	and do
	write(0,*)"	real*8, parameter :: htar=",grosor	enu uo
	write(0,*)"	real*8, parameter :: zwtar=8.0"	
	write(0,*)"	real*8, parameter :: xtar=0. "	open(3,file="labels.cs
	write(0,*)"	real*8, parameter :: ytar=0."	
	write(0,*)"	real*8, parameter :: ztar=zwtar+htar/2."	
	write(0,*)"	integer :: 1dtar "	do i=1.n espectro
	write(0,*)"	real*8, parameter :: sigmatar=0."	write(3.*)label(i)
	write(0,*)"	real*8, parameter :: rwin=0.57/2.d0"	and do
	Write(0,*)*	real*8, parameter :: hwin=2.0/d-6	ena ao
	Write(0,*)	real*8, parameter :: zwwin=8.5	
	Write(0,*)	real*8, parameter :: xwin=0.d0"	end program
	Write(0,*)	real*8, parameter :: ywin=0.d0"	
	Write(0,*)	real*8, parameter :: zwin=zwwin+nwin/2.	
	Write(0,*)	Integer :: 1dw1n	
	WPITP(0.*)	real*x. narameter !! rdet=0.5//).do"	20. 6-1 60

```
"gfortran geom.f input_main.f main.f ulgeo.f ulsource.f ull
od +x main.exe")
e ./main.exe < material.in")
-f main.exe")
-f *.mod")
elete")
```

```
re.f90")
m nombre"
pen (1,file='Edet.csv')"
all rename('Edet.csv','espectro",i,".csv')"
ogram"
```

```
tran nombre.f90 -o nombre.exe")
mbre.exe")
```

```
elete")
```

```
v")
```

Automation of AlphaMC

Labels (thickness)

1	1.89999994E-07
2	3.79999989E-07
3	5.69999997E-07
4	7.59999978E-07
5	9.49999958E-07
5	1.13999999E-06
7	1.32999992E-06
8	1.51999996E-06
9	1.70999999E-06
3	1.89999992E-06
L	2.08999995E-06
2	2.27999999E-06
3	2.47000003E-06
1	2.65999984E-06
5	2.84999987E-06
5	3.03999991E-06
7	3.22999995E-06
3	3.41999998E-06
9	3.60999979E-06
3	3.79999983E-06
L	3.99000010E-06
2	4.17999991E-06
3	4.36999971E-06
4	4.55999998E-06
5	4.74999979E-06
5	4.94000005E-06
7	5.12999986E-06
3	5.31999967E-06
9	5.50999994E-06
3	5.69999975E-06
L	5.8900001E-06
2	6.07999982E-06
3	6.26999963E-06
4	6.45999990E-06
5	6.64999970E-06
5	6.83999997E-06
7	7.02999978E-06
	7 210000505 06

			A			В		C		
	4	0.3	31500	0E-01	0.20	0000E-	+01 ().1414	21E+0	1
	5	0.4	10500	0E-01	0.10	0000E-	+01 (0.1000	00E+0	1
	6	0.4	19500	0E-01	0.10	0000E-	+01 ().1000	00E+0	1
	7	0.5	58500	0E-01	0.10	0000E-	+01 (0.1000	00E+0	1
	8	0.6	57500	0E-01	0.30	0000E-	+01 ().1732	05E+0	1
	9	0.7	76500	0E-01	0.20	0000E-	+01 ().1414	21E+0	1
	10	0.8	35500	0E-01	0.10	0000E-	+01 (0.1000	00E+0	1
	11	0.9	94500	0E-01	0.40	0000E-	+01 ().2000	00E+0	1
	12	0.1	10350	0E+00	0.10	0000E	+01	0.1000	000E+0	01
	13	0.1	11250	0E+00	0.00	0000E	+00	0.0000	000E+0	00
	14	0.1	12150	0E+00	0.00	0000E	+00	0.0000	000E+0	00
	15	0.1	13050	0E+00	0.10	0000E	+01	0.1000	000E+0	01
	16	0.1	13950	0E+00	0.00	0000E	+00	0.0000	000E+0	00
	17	0.1	14850	0E+00	0.00	0000E	+00	0.0000	000E+0	00
	18	0.1	15750	0E+00	0.10	0000E	+01	0.1000	000E+0)1
	19	0.1	16650	0E+00	0.00	0000E	+00	0.0000	000E+0	00
	20	0.1	17550	0E+00	0.00	0000E	+00	0.0000	000E+0	00
	21	0.1	18450	0E+00	0.00	0000E	+00	0.0000	000E+0	00
	22	0.1	19350	0E+00	0.10	0000E	+01	0.1000	000E+0)1
	23	0.2	20250	0E+00	0.00	0000E	+00	0.0000	000E+0	00
	24	0.2	21150	0E+00	0.10	0000E	+01	0.1000	000E+0)1
	25	0.2	22050	0E+00	0.10	0000E	+01	0.1000	000E+0)1
	26	0.2	22950	0E+00	0.00	0000E	+00	0.0000	000E+0	00
Sportrums	27	0.2	23850	0E+00	0.00	0000E	+00	0.0000	000E+0	00
Spectrums	28	0.2	24750	0E+00	0.00	0000E	+00	0.0000	000E+0	00
	29	0.2	25650	0E+00	0.00	0000E	+00	0.0000	000E+0	00
	30	0.2	26550	0E+00	0.00	0000E	+00	0.0000	000E+0	00
	-	•		esp	ectro		6	(Ð	
	Listo	0	K? Acc	esibilid	ad: No	disponi	ble			
	-		Q	Buse	car				TE	

Clean

Spectrum

A1		-	: [\times	\checkmark	f_x
	А			В		C
1	0.00000	0E+00				
2	1.0					
3	1.0					
4	2.0					
5	1.0					
6	1.0					
7	1.0					
8	3.0					
9	2.0					
10	1.0					
11	4.0					
12	1.0					
13	0.0					
14	0.0					
15	1.0					
16	0.0					
17	0.0					
18	1.0					
19	0.0					
20	0.0					
21	0.0					
22	1.0					
23	0.0					
24	1.0					
25	1.0					
26	0.0					
27	0.0					
		esp	ectr	0	6	(
Listo 😤 Accesibilidad: No disponible						
-		Bus	car			

First steps making the IA

One spectrum Three spectrums Ten spectrums

Very simple networks to decide the hyperparameters

More data (didn't work)

GIVING THE WHOLE SPECTRUM TO THE NETWORK WAS LEADING TO INCONCLUSSIVE RESULTS.

SIMPLIFICATION

Analyze the spectrums partially

100 spectrums

1000 spectrums

3000 spectrums

Error (nm)

It seems it would eventually converge with more data

Aean errorMean errorwith onewith twopeak:peaks:45,84 nm45,14 nm

When does it stop working?

Each train would get very different results, even using the same data and network

> For each set of data I would use the best adjusted one after a few trials

Epochs: 1000,100,30 Batch size: 5

layers

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

100 relu 90 sigmoid 08 sigmoid 70 sigmoid 60 relu 50 relu relu 40 relu 30 relu 20 relu 10 relu 1

Thanks

Questions?

