

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

[Target Production]

Inês Marques

Supervisors: Margarida Paulino, Ricardo Pires and Pamela Teubig

1. TargetWhat it is and what it is used for?

Target

•Thin films can be a layer, a multi-layer or a mix of materials

•Have applications in nuclear physics, optics and eletronics

•Designed with Thermal Evaporation using the evaporator in FCUL

Fig. 1: Targets

2. Thermal Evaporation

Evaporator and how it works

Thermal Evaporation

Fig. 2: Thermal Evaporation Process Credits: <u>Thermal Evaporation</u>, video by Duke University - SMIF

Thermal Evaporation

Fig. 3: Cleaning the chamber

Fig. 4: Boats with Tin between electrodes

Fig. 5: Shelf with glass slides placed above the boat

Thermal Evaporation

Fig. 6: Closed chamber with vacum around 10^{-6} mbar

Fig. 7: Glowing coming for the boat inside the chamber

Fishing targets

Fig. 8: Releasing the substract from the glass slide

Fig. 9: The frames and instruments used for fishing

Fig. 10: Produced targets

3. Target Characterization

Alpha Loss Energy and RBS analysis and simulations

Alpha Loss Energy

•From the measured energy loss of alpha particle's, the thickness of a target is determinated

Fig. 11: Chamber

Sn targets were analysed using a Ra-226 as alpha particle's source

$$\Delta x = \int_{E_i}^{E_f} -\left(\frac{dE}{dx}\right)^{-1} dE$$

Fig. 12: The dectetor and the source

Alpha Loss Energy

Fig. 13: Calibration for the Alpha Loss Energy

Alpha Loss Energy

Fig. 14: Comparison between the energy of the detected alpha particles with and without the target between the source and the dectetor .

AlfaMC

Fig. 15: Comparison between the simulated and the experimental values for a tin target

RBS

Rutherford Backscattering Spectrometry

Can be done by using one of the two accelerators of the CTN

•With kinematic factor, stopping power and the energy variation, we can determinate the thickness

Fig. 16: Chamber used in Tandem accelerator

Fig. 17: Chamber used in Van de Graaff accelerator

RBS

Fig. 16: Example of acquired data from Van de Graaff accelator in CTN using lead targets

SIMNRA

Fig. 17: Simulation using SIMNRA that compare the experimental data with simulated data.

