Gamma spectroscopy of radioactive nuclei

Supervisors: Daniel Galaviz, Pamela Teubig

Intern: Pedro Batista

Topics of the presentation

- Contextualization of the experiment and its motivation;
- Experimental setup;
- Challenges of dealing with old data;
- Calibration of the detectors;
- Next steps in the analysis;

Contextualization of the experiment

- This experiment was performed in NSCL, part of Michigan State University, with the objective to better understand the properties of excited states of ³⁰S and to decrease the uncertainty of the reaction rate in the context of the astrophysical rapid-proton capture process (rp-process).
- The rp-process is characteristic of type 1 x-ray bursts that happen in neutron stars.

Experimental Setup

Data retrieval

- The experiment was performed at NSCL in 2005;
- The data was "stuck" in an old computer with no possibility of doing any analysis;
- A virtual machine was created with the same operating system and software as the old computer;
- The data was successfully transferred to the virtual machine;

Types of runs:

	³¹ S Primary beam	Plastic target	Radioactive sources
Reacted setting	\checkmark	\checkmark	×
Unreacted setting	\checkmark	×	×
Calibration	×	×	\checkmark

- Reacted setting corresponds to runs where the primary beam of ³¹S interacted with the target;
- Unreacted setting corresponds to runs where there was beam but no target, therefore no interaction;
- Calibration corresponds to runs where there was no target and where, instead of using the primary beam, radioactive sources with a well known gamma emission spectrum were used;
- There were also background runs made with no beam with the purpose of measuring the background spectrum for later confirmation of the calibration done.

Figure 1: Gamma spectrum of 152Eu measured by the SeGA detector number 2.

Figure 2: Gammas from the decay of the radioactive source ¹⁵²Eu. These values were taken from NuDat 3.0.

Figure 4: Gammas from the decay of the radioactive source ⁵⁶Co. These values were taken from NuDat 3.0.

Figure 5: Background spectrum, measured by detector 2, with isotopes like 40 K and products from the decay chain of 238 U identified.

Figure 6: Decay chain of ²³⁸U.

Figure 7: Verification of the results obtained using the calibration with only ⁵⁶Co. The horizontal lines represent the energy of the isotopes identified earlier and the dots are the energy obtained after applying the calibration.

The future

- Use the calibration in a reacted setting to obtain the energy of the gammas emitted by the excited nuclei;
- Reconstruct the trajectory of the gammas;
- Calculate the angle of emission;
- Determine the doppler effect;

Thank you for your attention