

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

"The hidden charm in the COMPASS and AMBER experiments at CERN"

LIP Internship Program 2023 Bárbara Lopes Pereira Supervisor: Catarina Quintans

The hidden charm

COMPASS Experiment

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

High Energy

Fixed Target Experiment

COMPASS Experiment: Drell-Yan Data Taking 2018

COMPASS Experiment: Drell-Yan Data Taking 2018

Dimuon Trigger Systems

Outer(SAS) and LAS

LAS and LAS

Large Angle Spectrometer

 $20 mrad < \theta < 80 mrad$

Small Angle Spectrometer

 $5 mrad < \theta < 80 mrad$

Event Selection

Kinematic Variables

$M > 1.5 \; GeV/c^2$

Invariant Mass Spectrum for NH₃ Cell 1

Invariant Mass Distribrution NH3 Cell1 (2LAS + OUTLAS)

Invariant Mass Spectrum for NH₃ Cell 2

Invariant Mass Distribuition NH3 Cell 2 (2LAS + OTLAS)

Invariant Mass Spectrum for W

8

Massµ⁻µ⁺ /(GeVc²)

127411

0.7797

0.9451

48.73 / 66

 3.111 ± 0.004

2195 ± 289.5

 0.3325 ± 0.0046

0.3052 ± 0.0259

-5.932 ± 0.210

2098 ± 1260.1

0.8922 ± 0.0886

1.916e+05 ± 2.007e+04

7

4.286e+04 ± 5.775e+02

2.38

J/ ψ and ψ ' Ratios for NH₃ Cell 1

	2LAS + OTLAS
Γ	$[200, c_{a}W/a^{2}, 2, c_{a}V/a^{2}]$
	$\frac{[2.9 \text{ GeV}/C^2, 3.53 \text{ GeV}/C^2]}{[/\psi(\%) = 93.74]}$
ľ	$\# J/\psi = 22919$
	$J/\psi(\%) = 93.74$ # $J/\psi = 22919$

$[3.6GeV/c^2, 3.95GeV/c^2]$
$\psi'(\%) = 45.02$
J/ψ Contamination(%) = 7.81
Background(%) = 41.7

2LAS

 $[2.9 \ GeV/c^2, 3.53 GeV/c^2]$ $J/\psi(\%) = 94.75$ $\# J/\psi = 14792$

 $[3.6GeV/c^{2}, 3.95GeV/c^{2}]$ $\psi'(\%) = 48.22$ $J/\psi \text{ Contamination}(\%) = 9.11$ Background(%) = 42.62 OTLAS

$[2.9 GeV/c^2, 3.53 GeV/c^2]$	
$J/\psi(\%) = 92.46$	
# <i>J/ψ</i> =9858	

[3.6 <i>GeV/c</i> ² , 3.95 <i>GeV/c</i> ²]
$\psi'(\%) = 43.87$
J/ψ Contamination(%) = 6.12
Background(%) = 50.01

J/ ψ and ψ ' Ratios for NH₃ Cell 2

2LAS + OTLAS	2LAS	OTLAS
$[2.9 \ GeV/c^2, 3.53 GeV/c^2]$	$[2.9 \ GeV/c^2, 3.53 \ GeV/c^2]$	$[2.9 \ GeV/c^2, 3.53 \ GeV/c^2]$
$J/\psi(\%) = 91.78$	$J/\psi(\%) = 94.44$	$J/\psi(\%) = 87.91$
# <i>J</i> /ψ=19131	$#J/\psi = 12292$	# <i>J</i> /ψ=7684
$[3.6GeV/c^2, 3.95GeV/c^2]$	$[3.6GeV/c^2, 3.95GeV/c^2]$	$[3.6GeV/c^2, 3.95GeV/c^2]$
$\psi'(\%) = 48.74$	$\psi'(\%) = 56.91$	$\psi'(\%) = 38.64$
J/ψ Contamination(%) = 10.36	J/ψ Contamination(%) = 8.37	J/ψ Contamination(%) = 14.73
Background(%) = 40.90	Background(%) = 34.72	Background(%) = 46.63

J/ ψ and ψ ' Ratios for W

2LAS + OTLAS
$[2.55 GeV/c^2, 3.6 GeV/c^2]$
$J/\psi(\%) = 85.18$
J/ψ =42681
$[3.67 GeV/c^2, 3.95 GeV/c^2]$
$\psi'(\%) = 22.46$
J/ψ Contamination(%) = 59.34
Background(%) = 18.20

2LAS

 $[2.77 GeV/c^2, 3.6 GeV/c^2]$ $J/\psi(\%) = 90.81$ $\# J/\psi = 25880$

 $[3.67 GeV/c^{2}, 4.02 GeV/c^{2}]$ $\psi'(\%) = 28.37$ $J/\psi \text{ Contamination}(\%) = 53.38$ Background(%) = 18.25

OTLAS	
[2.77 <i>GeV/c</i> ² , 3.6 <i>GeV/c</i> ²]	
$J/\psi(\%) = 80.63$	
# $J/\psi = 19945$	

ψ Peak	
The fit doesn't find ψ'	

Kinematic Variables for NH₃ Cell 1

$M > 1.5 \ GeV/c^2$

14

Kinematic Variables for NH₃ Cell 2

$M > 1.5 \ GeV/c^2$

Kinematic Variables for W

$M > 1.5 \ GeV/c^2$

Conclusions

- The J/ ψ resonance can be observed in NH₃ target and W target in both trigger systems considered (2LAS and OTLAS);
- The ψ ' resonance can be observed in NH₃ target in both trigger systems considered (2LAS and OTLAS), however ψ ' can be observed in the W target, only by considering 2LAS;
- We cannot make rigorous conclusions from the comparison of the kinetic variables of J/ψ and ψ ', considering the ratio of Background in the selected intervals is still too elevated to be neglected.