Combinatorial background of muon pairs
 Internship Final Presentation

(O)

COMPASS
Experiment

Drell-Yan vs.
Combinatorial
background
What are these processes?
Part Two

Internship Objectives	
What we did and focused on during the internship Part Three	Kinematic Variables and Cuts
What are they and how to get them? Part Four	

CONTENTS

COMPASS Experiment

COMPASS Experiment

High-energy Experiment

Consisting in beam-fixed target colisions

Beam:
Fixed targets:
$>$ Negative Pion
>2 Polarized NH_{3} Cells
$\rightarrow 1 \mathrm{Al}$ Cell
> 1 W Cell

LAS setup side-view

Angles
 between 50 and 200 mrad
 SAS
 Angles
 between 20 and 70 mrad
 Trigger for 2 muons

Drell-Yan (DY)

 vs. Combinatorial Background (CB)02

Drell-Yan (DY)

It's a physics process between quarks
In the high energy collision of 2
hadrons, the quark-antiquark annihilation produces a virtual photon
that converts into a pair of lepton-antilepton in the final state.

Combinatorial Background (CB)

Muons that are close enough in time and space that will be seen as coming out of the same vertex

Statistically can be determined through like sign pairs of muons with the expression:

$$
(+-)=2 \sqrt{(++) \cdot(--)}
$$

Drell-Yan (DY)

It's a physics process between quarks
In the high energy collision of 2
hadrons, the quark-antiquark annihilation produces a virtual photon
that converts into a pair of lepton-antilepton in the final state.

Combinatorial Background (CB)

Muons that are close enough in time and space that will be seen as coming out of the same vertex

Statistically can be determined through like sign pairs of muons with the expression:

$$
(+-)=2 \sqrt{(++) \cdot(--)}
$$

Important:
$>$ The spectrometer must have the same acceptance for both charges for this to apply

Kinematic Variables and Cuts

Most used variables - Single Muons

Theta Angle

- Aperture angle with the respect to the Z-axis in the laboratory frame

Most used variables - Single Muons

Theta Angle

Total Momentum

- Aperture angle with the respect to the Z-axis in the laboratory frame

Most used variables - Single Muons

Theta Angle

Total Momentum

ZFirst and ZLast

- Aperture angle with the respect to the Z-axis in the laboratory frame
- First and last measured points along z of the muon's track

Most used variables - Single Muons

Theta Angle

Total Momentum

ZFirst and ZLast

Time of Detection

- Aperture angle with the respect to the Z-axis in the laboratory frame
- First and last measured points along z of the muon's track
- Mean time of the particle's track with respect to the trigger

Most used variables - Single Muons

Theta Angle

Total Momentum

ZFirst and ZLast

Time of Detection

Vertex Coordinates

- Aperture angle with the respect to the Z-axis in the laboratory frame
- First and last measured points along z of the muon's track
- Mean time of the particle's track with respect to the trigger
- X, Y and Z positions of the vertex from where the particles came out

Most used variables - Single Muons

Theta Angle

Total Momentum

ZFirst and ZLast

Time of Detection

Vertex Coordinates

Track Chi Squared

- Aperture angle with the respect to the Z-axis in the laboratory frame
- First and last measured points along z of the muon's track
- Mean time of the particle's track with respect to the trigger
- X, Y and Z positions of the vertex from where the particles came out
- Chi distribution squared, that will be divided by the number of degrees of freedom

Most used variables - Pairs

- Mass before particle's decay, calculated from the energies and momenta of the decay products.

Invariant Mass

Most used variables - Pairs

Invariant Mass

Total Momentum

- Mass before particle's decay, calculated from the energies and momenta of the decay products.

Most used variables - Pairs

Invariant Mass

Total Momentum

Transverse Momentum

- Mass before particle's decay, calculated from the energies and momenta of the decay products.
$\sqrt{P_{x}^{2}+P_{y}^{2}}$

Most used variables - Pairs

Invariant Mass

Total Momentum

Transverse

Momentum
Feynman $X-x_{F}$

- Mass before particle's decay, calculated from the energies and momenta of the decay products.

Cuts applied

- ZLast > 1500 cm
- Zfirst < 300 cm
- Trigger: 2 muons on LAS
- Time of detection defined
- Time difference between 2 muons < 3 ns
- $\chi^{2} / n d f<8$
- $\sqrt{X_{\text {vertex }}^{2}+Y_{\text {vertex }}^{2}}<2 \mathrm{~cm}$
- Invariant Mass > $1,5 \mathrm{GeV} / \mathrm{c}^{2}$
- $-1<\mathrm{x}_{\mathrm{F}}<1$
- Separation by target:

$$
\text { NH3 Cell } 1 \quad-300<Z_{\text {vertex }}(\mathrm{cm})<-240
$$

$$
\text { NH3 Cell } 2 \quad-220<Z_{\text {vertex }}(\mathrm{cm})<-164
$$

$$
\text { Al Cell } \quad-80<Z_{\text {vertex }}(\mathrm{cm})<-60
$$

$$
\text { W Cell } \quad-40<Z_{\text {vertex }}(\mathrm{cm})<-10
$$

Results and Data Analysis

Super-Imposing Like-Signs histograms

Verifying if two charges from like-sign look identical (assumption of similar acceptance from slide 8)

NH3 Cell 1

NH3 Cell 2

Al Cell

Xf

W Cell

Super-Imposing Combinatorial background and Dimuon Data

Bin by bin we are using the number of entries of each value in the previous expression (revisiting slide 8 expression):

$$
(+-)=2 \sqrt{(++) \cdot(--)}
$$

NH3 Cell 1

NH3 Cell 2

AlCell

WCell

Conclusion

Conclusion

$>$ Combinatorial background cannot be avoided, but can be estimated statistically from like-sign pairs;
$>$ We can see that there is some other physics processes happening at low masses other than this background;
$>$ To better understand the entire mass spectrum, we need to consider all contributions: Drell-Yan, open-charm, J/ ψ, ψ^{\prime} but also combinatorial background;
$>$ This method always suffers from low statistics, which implies large uncertainties. \Longleftrightarrow An alternative method was studied by another student.

