

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Selection of B mesons at low transverse momentum

Rodrigo Ferreira

Supervisors

Nuno Leonardo Henrique Legoinha Simão Costa

September 8, 2023

Project goal

Study the decay of B mesons with low transverse momentum (pT)

Quark Coalescence

Thought to play a more noticeable role in quark hadronization, when the b quark (and thus the resulting B hadron) travel with smaller momentum and may more easily bind with other quarks in the surroundings

Low pT region is characterized by a larger level of other physics processes mimicking the meson decay (background events)

Learn and apply machine learning techniques to optimally classify signal (B meson decays) from the more abundant background

Solution

Explore observable properties of the decay to optimize its selection (signal vs background separation) employing CMS data and simulation to train machine learning algorithms

B+->J/ψ K+

Feynman diagrams for B + \rightarrow J/ ψ K+ decays

Source: CMS Collaboration

Observable properties

Bmass – B+ mass

Balpha – Angle between B+ meson displacement(SV –PV distance) and its 3d momentum

Bchi2cl – Chi square probability of the secondary decay vertex

dls - Decay length normalized by its uncertainity

Btrk1Pt – Track's tranverse momentum

Btrk1Eta – track's pseudorapidty

Correlation between variables

		Correlation Matrix - Background													1 00
0.18	- 1.00	Btrk1Pt -	1.00	-0.08	-0.01	-0.00	0.05	-0.06	0.03	-0.01	-0.01	0.02		ľ	
0.00	- 0.75	Trk1DCAz -	-0.08	1.00	0.03	-0.13	-0.03	0.01	-0.01	0.01	-0.04	0.00		- 0).75
0.01	- 0.50	rk1DCAxy -	-0.01	0.03	1.00	0.01	-0.00	-0.06	-0.02	-0.00	-0.02	0.02		- 0	0.50
0.01		dls -	-0.00	-0.13	0.01	1.00	0.14	-0.08	0.08	0.02	0.06	-0.10		- ().25
0.02	- 0.25	Balpha -	0.05	-0.03	-0.00	0.14	1.00	-0.19	0.04	-0.02	0.01	-0.08		- (0.00
0.02	- 0.00	dls2D -	-0.06	0.01	-0.06	-0.08	-0.19	1.00	-0.02	0.06	0.00	0.05			
0.09	0.25	Bchi2cl -	0.03	-0.01	-0.02	0.08	0.04	-0.02	1.00	-0.03	0.00	-0.01			-0.25
).00		Btrk1Eta -	-0.01	0.01	-0.00	0.02	-0.02	0.06	-0.03	1.00	0.03	-0.01			-0.50
0.00	0.50	Bmass -	-0.01	-0.04	-0.02	0.06	0.01	0.00	0.00	0.03	1.00	-0.01			-0.75
0.00	0.75	Bpt -	0.02	0.00	0.02	-0.10	-0.08	0.05	-0.01	-0.01	-0.01	1.00			_1 00
1.00	1 00		<1Pt -	CAz -	- Axy	dls -	- pha	s2D -	- ii2cl	LEta -	ass -	Bpt -		_	-1.00
Ļ	-1.00		Ē	<u> </u>	R		3a	р	<u>t</u>	 بخ	ЗЛ				

Future goals

- Employ the studied variables to train ML algorithms
- Algorithms that may be tried: BDT, NN(pyTorch), or others found to be useful!
- Repeat the procedure to the more challenging low pT region

