Obtaining highprecision predictions for top-pair production at the LHC in perturbative QCD

ANDRÉ ALVES

SUPERVISOR: JOÃO PIRES

SEPTEMBER 08, 2023

The top quark

Top quark decay

What is the most likely decay path?

 $t \rightarrow bW^+$

Top quark lifetime

$$\mathcal{M}_1 = -g_{\rm W} \sqrt{2m_{\rm t} {\rm p}^*},$$

$$\mathcal{M}_2 = -\frac{g_{\mathrm{W}}}{m_{\mathrm{W}}} \sqrt{m_{\mathrm{t}} \mathrm{p}^*} (E^* + \mathrm{p}^*)$$

$$\langle |\mathcal{M}^2| \rangle = \frac{1}{2} \left(|\mathcal{M}_1^2| + |\mathcal{M}_2^2| \right)$$

$$\Gamma(t \to bW^{+}) = \frac{G_F m_t^3}{8\sqrt{2}\pi} \left(1 - \frac{m_W^2}{m_t^2}\right)^2 \left(1 + \frac{2m_W^2}{m_t^2}\right)$$

$$\tau_{\rm t} = 1/\Gamma_{\rm t} \approx 5 \times 10^{-25} \, {\rm s}$$

Strong force coupling constant, asymptotic freedom and muR

The interaction probability is proportional to the matrix element Squared and $|M|^2 \propto g^4$

$$\alpha_{s} = \frac{g_{S}^{2}}{4\pi}$$
Renormalization scale
$$\alpha(q^{2} \approx 0) \sim 1/137 \approx 0,0073$$

$$\alpha_{s}(q^{2} \approx 0) \sim 1$$

$$\alpha_{s}(m_{Z}^{2}) \sim 0,118$$

$$\alpha_{s} = \alpha_{s}(q,\mu_{R})$$

PDF and factorization scale

Top quark production at the LHC

Proton-Proton collisions

https://cds.cern.ch/record/2314658/files/ATL-PHYS-SLIDE-2018-190.pdf

Perturbative expansion $pp \rightarrow t\bar{t}$

• Almost independent from \sqrt{s}

•
$$\sigma_{NLO} \sim 45\% - 50\%$$

- $\sigma_{NNLO} \sim 12\%$
- Converges quickly

Theory uncertainty from renormalization and factorization scales

Prediction vs ATLAS and CMS measurement

PDF uncertainty 5.02TeV

PDF uncertainty 7.0TeV

PDF uncertainty 8.0TeV

PDF uncertainty 13.0TeV

PDF uncertainty 13.6TeV

Conclusion

- •The experimental results agree with the theoretical predictions, the standard model can predict the cross section in perturbative QCD accurately
- •In LO, the error can reach 40%, in NLO 20% but in NNLO only 5%
- •PDF and muR and muF error usually under 5%
- •Next step would be to study the differential $t\bar{t}$ cross-section as a function of the invariant mass of the top-quark pair, $m_{t\bar{t}} = (p_t + p_{\bar{t}})^2$.

