Investigating the Flavour Anomalies with Machine Learning at LHC

João Bernardo, Madalena Blanc | Alessio Boletti, Nuno Leonardo

LIP Internship Program Workshop, 8/9/2023

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

João Bernardo, Madalena Blanc

Flavour Anomalies (b→sll)

SM: Loop-level

Fig.1: Substantial tensions between the SM predictions and the available experimental data.

Flavour Anomalies (b→sll)

Fig.1: Substantial tensions between the SM predictions and the available experimental data.

Flavour Anomalies (b→sll)

BSM: Tree-level

Project Goal: $B^0 \rightarrow K^{*0} J/\Psi \rightarrow K^+\pi^- \mu^+\mu^-$

Apply Single and Multivariate Analysis to discriminate <u>signal</u> from <u>background</u>

Signal: final state particles coming from the B⁰-meson

Background: final state particles coming from other processes

Project Goal: $B^0 \rightarrow K^{*0} J/\Psi \rightarrow K^+\pi^- \mu^+\mu^-$

Apply Single and Multivariate Analysis to discriminate <u>signal</u> from <u>background</u>

Signal: final state particles coming from the B⁰-meson

Background: final state particles coming from other processes

Project Goal: $B^0 \rightarrow K^{*0} J/\Psi \rightarrow K^+\pi^- \mu^+\mu^-$

Apply Single and Multivariate Analysis to discriminate <u>signal</u> from <u>background</u>

Compare the performance

and the figure of merit

$$FOM = rac{S}{\sqrt{S+B}}$$

CMS Detector

- Silicon Trackers
- ECAL
- HCAL
- Muon Chambers

CMS Detector

João Bernardo, Madalena Blanc

$B^0 \rightarrow K^{*0} J/\Psi$ (dimuon triggers)

Signal/Background samples for ML training

Background:

Left and right sidebands of the data sample $(B^0 \rightarrow K^{*0} J/\Psi$ channel collected with dimuon triggers in 2018)

Signal: Peak region of the Monte Carlo simulation

Variables chosen:

- Flight length
- Flight length significance
- $\cos(\alpha)$
- Vertex confidence level
- Negative track DCA from beamspot
- Positive track DCA from beamspot
- Leading muon p_T
- Trailing muon p_T
- Negative track p_T
- Positive track p_T
- B-candidate tag

Variables chosen:

- Flight length
- Flight length significance
- $\cos(\alpha)$
- Vertex confidence level
- Negative track DCA from beamspot
- Positive track DCA from beamspot
- Leading muon p_T
- Trailing muon p_T
- Negative track p_T
- Positive track p_T
- B-candidate tag

Variables chosen:

- Flight length
- Flight length significance
- $\cos(\alpha)$
- Vertex confidence level
- Negative track DCA from beamspot
- Positive track DCA from beamspot
- Leading muon p_T
- Trailing muon p_T
- Negative track p_T
- Positive track p_T
- B-candidate tag

- Flight length
- Flight length significance
- $\cos(\alpha)$
- Vertex confidence level
- Negative track DCA from beamspot
- Positive track DCA from beamspot
- Leading muon p_T
- Trailing muon p_T
- Negative track p_T
- Positive track p_T
- B-candidate tag

→ To separate signal from background, where is the best place to cut?

João Bernardo, Madalena Blanc

Single Variate Analysis

Single Variate Analysis

João Bernardo, Madalena Blanc

Neural Network Parameters

- Number of layers: 3
- Number of hidden layers: 64
- Non-linear activation: relu
- Dropout
- Number of epochs: 50

Final accuracy: 0.8012

Discriminating variables:

- Flight length
- $\cos(\alpha)$
- Vertex confidence level
- Negative (positive) track DCA from BS
- Leading (trailing) muon pT
- Negative (positive) track pT
- B-candidate tag

Hyperparameters:

- Number of trees=250
- Minimal node size: 2.5%
- Maximum depth: 5
- Number of cuts: 30

Signal efficiency vs. Background rejection

Results Comparison

Before (BDT)

After (BDT)

Results Comparison

Conclusions

- Project integrated in the exploration of Flavour Anomalies in LHC data with CMS
- Studied features of the B^o meson decay that allow to discriminate signal from background
- Explored Machine Learning methods (BDT & NN algorithms) to optimally correlated input features

Next steps:

• Apply the <u>developed tools</u> to the rare B^o decay channel (non-resonant) for exploring Flavour-Anomaly dedicated datasets collected by CMS

Thank you!

Any questions?

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Backup Slides

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Flavour Anomalies ($b \rightarrow c\tau v$)

Fig.1: The SM predictions are in tension with the experimental world average at the 3.2σ level (ALpine Particle physics Symposium 2023).

João Bernardo, Madalena Blanc

João Bernardo, Madalena Blanc

Future Project Goals (samples)

- 1. Apply machine learning classifiers (BDT and NN) to discriminate signal from background
- 1. Samples:
 - 1. $B^{0} \rightarrow (K^{*0})(J/\Psi)$ signal channel collected with **dimuon** triggers
 - 2. $B^{0} \rightarrow (K^{*0})(\mu \mu)$ signal channel collected with **dimuon** triggers
 - 3. $B^0 \rightarrow (K^{*0})(J/\Psi)$ signal channel collected with special "**B-parking**" triggers (*)
 - 4. $B^{0} \rightarrow (K^{*0})(\mu \mu)$ signal channel collected with special "**B-parking**" triggers (*)

1. Compare the performance and the <u>figure of merit</u> obtained

$$FOM = rac{S}{\sqrt{S+B}}$$

$B^0 \rightarrow K^{*0} J/\Psi$ (Binned Likelihood Fit)

Signal PDF: Gaussian + Crystal Ball

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

$$f(x;lpha,n,ar{x},\sigma)=N\cdot egin{cases} \exp(-rac{(x-ar{x})^2}{2\sigma^2}), & ext{for } rac{x-ar{x}}{\sigma}>-lpha\ A\cdot(B-rac{x-ar{x}}{\sigma})^{-n}, & ext{for } rac{x-ar{x}}{\sigma}\leqslant-lpha \end{cases}$$

$$egin{aligned} A &= \left(rac{n}{|lpha|}
ight)^n \cdot \exp\left(-rac{|lpha|^2}{2}
ight), \ B &= rac{n}{|lpha|} - |lpha|, \ N &= rac{1}{\sigma(C+D)}, \ C &= rac{n}{|lpha|} \cdot rac{1}{n-1} \cdot \exp\left(-rac{|lpha|^2}{2}
ight), \ D &= \sqrt{rac{\pi}{2}} \left(1 + ext{erf}igg(rac{|lpha|}{\sqrt{2}}igg)igg). \end{aligned}$$

Background PDF: Exponential

 $\operatorname{RooExponential}(x,c) = \mathcal{N} \cdot \exp(c \cdot x)$

$$\operatorname{erf} z = rac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} \, \mathrm{d} t$$

Correlation Matrix

Signal

- 0.8

- 0.6

- 0.2

- 0.0

Background

References

□ <u>https://espace.cern.ch/CMS-</u>

LIP/INTERNSHIP/SUMMER2021/ANOMALIES/INTRO%20MATERIAL/B0TOKSTARMUMU-ANALYSIS-INTRO-FALL2020.PDF

□ <u>https://espace.cern.ch/CMS-</u>

LIP/INTERNSHIP/SUMMER2021/ANOMALIES/INTRO%20MATERIAL/BKMM DIFF BF 13TEV ERD MEETING.PD F

- https://espace.cern.ch/cms-lip/internship/summer2021/Presentations/anomalies_cms_20210806.pdf
- □ <u>https://espace.cern.ch/cms-lip/internship/summer2022/final_reports/Session_5_125_anomalies.pdf</u>
- □ <u>https://cds.cern.ch/record/2854794/files/ALPS2023</u> desimone.pdf
- □ https://cds.cern.ch/record/2853228/files/01-CLangenbruch-v1%2020.03.pdf
- □ <u>https://www.sciencedirect.com/science/article/pii/S0370269323002897?via%3Dihub</u>
- □ <u>https://arxiv.org/pdf/1307.2782.pdf</u>
- □ <u>https://arxiv.org/abs/2103.11769</u>
- □ <u>https://indico.cern.ch/event/1230772/contributions/5364196/attachments/2648626/4585252/langenbruch.pdf</u>

João Bernardo, Madalena Blanc