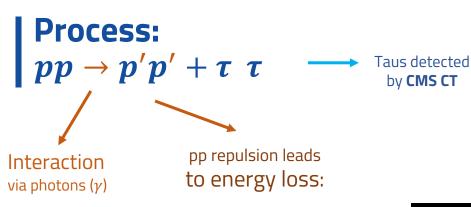
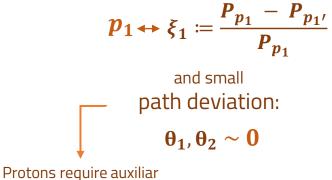


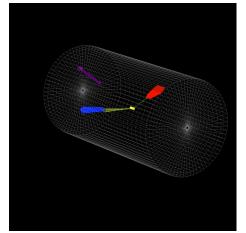
Central and exclusive production of $\tau^+\tau^-$ pairs at the **LHC** in the $\tau_h\tau_h$ decay channel


I am André Gomes

I am here because I love computation and particle physics. You can find me at fc58289@ aluno.fc.ul.pt


And I am F. Da Rocha Baldé

I love particle and nuclear physics. This is the 1st time I'm using ML. You can find me at fc56421@aluno.fc.ul.pt



Tau decayment channels (denoting the one in **study**)

$$\left\{egin{array}{l} oldsymbol{ au} o oldsymbol{ au_h} & ext{(Reconstructed from $hadrons)} \ oldsymbol{ au} o oldsymbol{ au_{\mu}} + \mu + \overline{
u_{\mu}} \ oldsymbol{ au} o oldsymbol{ au_{e}} + e + \overline{
u_{e}} \end{array}
ight.$$

detector, **PPS**

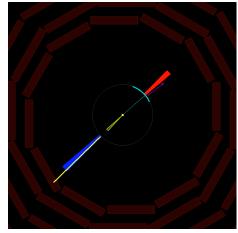


Fig.2 - Computer event display in CMS

CMS: main detector

- A detector at the LHC
 - 10 years to build
 - Higgs observation
 - LHC Run 3

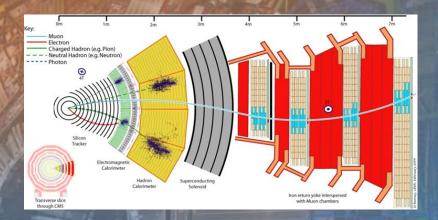


Fig.1 - Transversal view of a CMS section

- Compact Muon Solenoid
 - Many layers of mechanisms designed to measure energy and momenta
- Important variables derived

$$\blacksquare$$
 P , P_t , $M_x \coloneqq \sqrt{2P_1P_2(1-cos\theta)}$, $Y_x \coloneqq \frac{\log(\xi_1/\xi_2)}{2}$, $A \coloneqq \frac{|\Delta\phi|}{\pi}$

PPS: aux. detector

- Precision ProtonSpectrometer
- Located 200m from CMS' tips

- Symmetrical
- Composed of timing/ tracking stations and guiding magnets
- We only studied events with 1 p in the final state

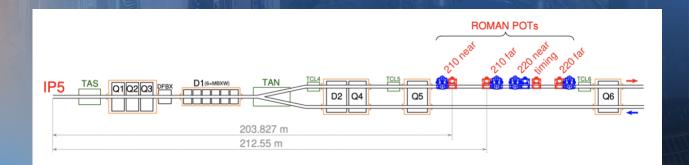
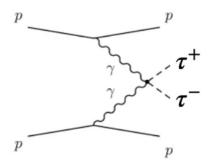


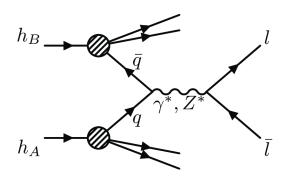
Fig.3 – PPS Tracking Station

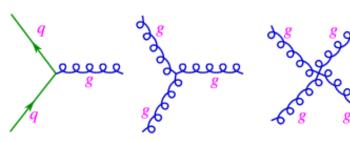

- Detects protons with $\xi \in [0.03; 0.2]$
- $M_{x} \coloneqq \sqrt{s} \, \xi_{1} \xi_{2} \,,$ $\sqrt{s} = 13 \, TeV$
- Proton **package** use combined with high density of interactions in short periods leads to pile-up!

Channel content

✓ Signal

The signal is the central and exclusive production of tau pairs.

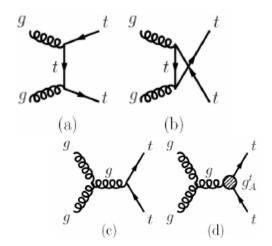

🖾 Background


The background encompasses all other processes; we focus on the three primary backgrounds: Drell-Yan, QCD, and ttJets.

Background types

Drell-Yan

- Production of a lepton (namely tau) pairs
- Mediated by Z boson/virtual γ, thus not necessarily back to back: θ<90°



ttJets

- Involves the production of pairs of top quarks.
- These top quarks subsequently decay into various particles.
- Back to back events

QCD

- It involves quarks, gluons, or quark-gluon pairs.
- Produces low-energy particle clusters called jets.
- Back to back events

Phases description

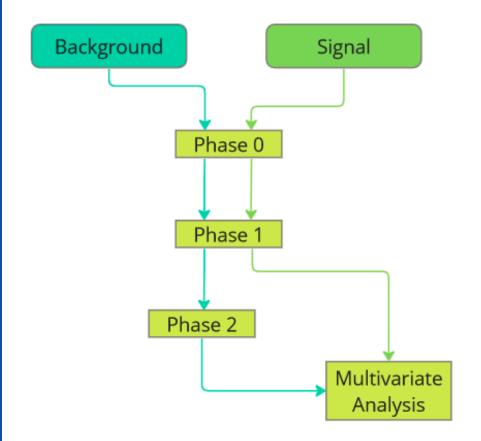
Sample filtration via a Superficial Trigger (primarily relies on linear momentum but also considers events with two taus).

Generally, events with less than 35 GeV of linear momentum do not pass this Trigger.

Phase 1 – Background, Signal

Three criteria were enforced for events to be selected in this phase: meeting the conditions for tauID, having a linear momentum exceeding 40 GeV, and exhibiting opposite charges.

The utilization of linear momentum was once more employed to mitigate the low Trigger efficiency.



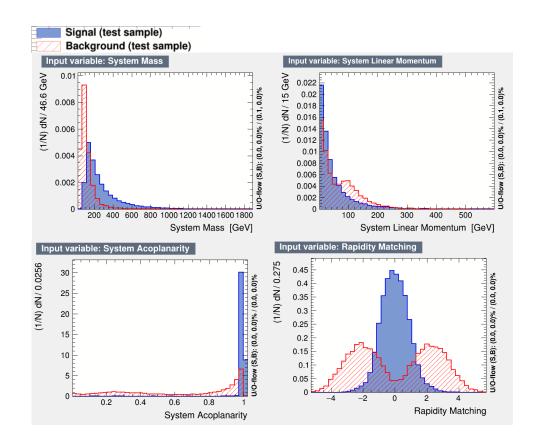
Phase 2 - Background

In this stage, there was proton enrichment—a statistical process in which we match some of the protons detected in events over the course of 2018 with our simulated events.

Project structure

The background lacks simulated protons because, unlike the signal with a straightforward ξ formula, simulating background protons is considerably more complex.

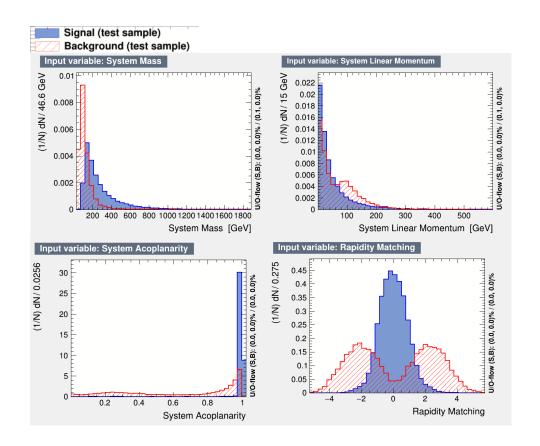
Events passing each condition


Data Treatment

	Background Events	Signal Events	Signal/Background
	67635136	28	4x10 ⁻⁷
$ au_{ID}$	126288	17	1.3x10 ⁻⁴
p>40 GeV	76823	15	2.0x10 ⁻⁴
Opposite Charges	40065	14	3.6x10 ⁻⁴
Events with 1 proton	18430	8	4.3x10 ⁻⁴

The input variables for the multivariate analysis were:

- System Mass
- System Linear Momentum
- System Acoplanarity
- Linear Momentum of each Tau
- Lost Energy of each Direction
- Rapidity Matching

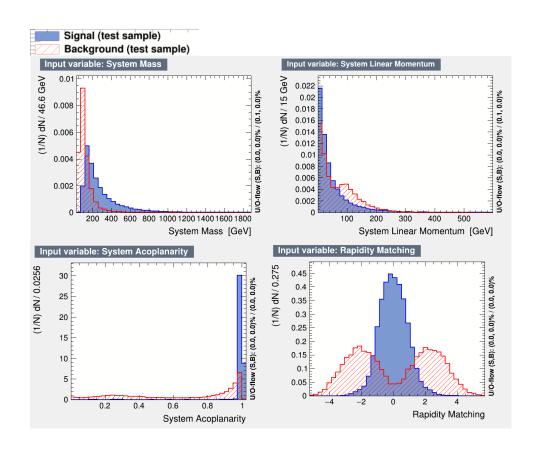


System Mass:

The single peak (similar to the combined mass of both taus)is due to the Z boson process w.

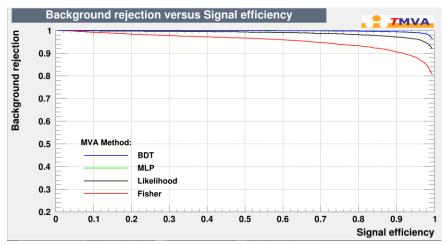
System Linear Momentum:

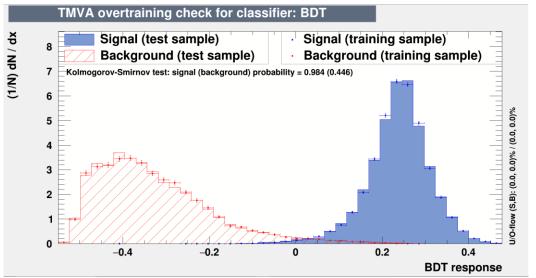
The background's momentum has two peaks, one from the Z boson in the DY process and another from backto-back processes.



System Acoplanarity:

In the background, two peaks appear: one from DY processes and a higher one in the signal due to its back-to-back nature.


Rapidity Matching:


Refers to the comparison between event rapidity and proton ξ calculated rapidity.

Output Results

Multivariate Analysis 💢

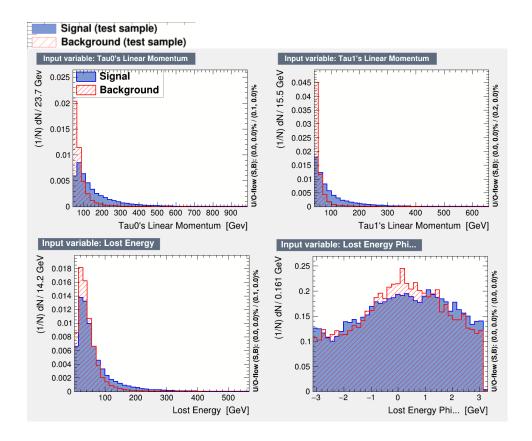
Conclusion

$$pp \rightarrow p'p' + \tau\tau$$

- \checkmark Final state hadronic τ
- ✓ Single proton in PPS
- ✓ Pile Up accounted

- ✓ Three different background types
- ✓ Filtering phases
- ✓ Proton enrichment
- ✓ Multivariate Ananlysis

✓ Separation of background and signal for future work



Sylvan Thanks I have so for the following the source of th

Any questions?

Input Variables Graphs

Multivariate Analysis 💝

