

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Quantum Machine Learning Applied to HEP: a Pragmatic Approach

Bruna Salgado & Catarina Felgueiras

Advisors: Nuno Castro & Gabriela Oliveira & Miguel Caçador

INTRODUCTION

SM AND BSM

Standard Model of Particle Physics (SM)

The Standard Model of Particle Physics (SM) has been highly successful in describing the fundamental constituents of matter and their interactions, as evidenced by its agreement with collider data.

Physics Beyond the Standard Model (BSM)

Nevertheless, **crucial questions persist**, such as gravity, dark matter, dark energy, and matter-antimatter asymmetry in the universe, **motivating** the **search for new physics beyond the SM** at the Large Hadron Collider at CERN.

QML IN THE CONTEXT OF BSM SEARCH

The exploration of BSM phenomena at colliders presents challenges due to vast datasets and low signal-to-background ratios.

To tackle this **ML techniques**, particularly for **classification tasks**, have been employed, revealing their remarkable ability to **identify correlations** in **high-dimensional parameter** spaces.

PROJECT DEVELOPED

A systematic **comparison** is made between the **performance** of Quantum Machine Learning (**QML**) and shallow Classical Machine Learning (**CML**).

The primary focus is on **binary classification** tasks, specifically **distinguishing** between **BSM signals** and **SM background**.

The investigation involves the utilization of **VQC**s, while also **exploring the potential of reduced data** through feature reduction techniques.

VARIATIONAL QUANTUM CLASSIER

VARIATIONAL QUANTUM CLASSIFIER (VQC)

Fig 1: Variational Quantum Classifier (VQC) structure

DATA EMBEDDING

ANSATZ

ANSATZ

Algorithm 1
Requires: $n \ge 2$, where <i>n</i> is the number of qubits
if $n == 2$ then
CNOT(1,0)
else
for qubit $\leftarrow 0$ to $n - 1$ do
if $qubit == n - 1$ then
CNOT(qubit, 0)
else
CNOT(qubit, qubit + 1)
end if
end for
end if

FINAL PREDICTION

¹Z. Holmes, K. Sharma, M. Cerezo, P.J. Coles, PRX Quantum 3, 010313 (2022)

² M. Cerezo, A. Sone, T. Volkoff, L. Cincio, P.J. Coles, Nature communications 12, 1791 (2021)

CLASSICAL OPTIMIZATION

Fig 2: An example circuit for the VQC architecture used. It is comprised of 2 layers and 3 features.

IMPLEMENTATION DETAILS

IMPLEMENTATION DETAILS

Algorithm 2		
params \leftarrow params_initialization()		
for epoch ← 1 to max_epochs do loss ← cost(params) params ← optimizer.step() if epoch_number%5 == 0 or epoch_number	3	The condition for stability was defined as not achieving a superior AUC score in 20 epochs.
== max_epochs then		
validation_step()		
end if		In each iteration, the model is applied to the
if early_stopping_cond and epoch_number >	4	training dataset, computing the cost function,
min_epochs then	•	and then updating the model parameters using
break		the Adam optimizer.
end if		
end for		

CHARACTERISTICS OF THE SIMULATION

The quantum machine learning experiments were simulated in **PennyLane**.

The quantum model's performance was evaluated on a **real quantum computer** using **PennyLane's integration with** IBM's quantum computing framework **Qiskit**.

SUPORT VECTOR MACHINE

SUPORT VECTOR MACHINES (SVM)

FEATURE SELECTION

SEQUENTIAL FEATURE SELECTION (SFS)

Feature	AUC Score			
\mathcal{E}_t	0.817		Objective	→ Identify the most relevant features.
large R-jet $ au_1$	0.576			
large R-jet $ au_3$	0.316		Description	 → iteratively removes one feature at a time based one their AUC score.
Jet ₂ p _t	0.313			
Jet ₁ p _t	0.292			

Table 1: Features selected by the SBS Algorithm and their respective AUC Score on the training dataset.

21

PRINCIPAL COMPONENT ANALYSIS (PCA)

Table 2: Features selected by the SBS Algorithm and their respective AUC Score on the training dataset.

FINDING THE OPTIMAL MODELS

GRIDSEARCH: SVM

Fig 3: Plot grid representing the results for the SVM grid search. Each data point represents the AUC score on the test dataset of a different set of HP.

GRIDSEARCH: SVM

GRIDSEARCH:VQC

The VQC grid search is still running and therefore it is not possible to present the results yet.

REAL COMPUTER

REAL COMPUTER RESULTS (IBMQ_BELEM)

Fig 4: Comparison of the performance achieved with SVM, VQC in simulation, VQC in a real device (ibmq_belem), and VQC in simulation with quantum noise from ibmq_belem .

REAL COMPUTER RESULTS

CONCLUSION

The primary **purpose** of this study is to **explore** the utilization of **QML** on **datasets** pertaining to **HEP**. Initially, a **grid search** was conducted to identify the optimal models, which encompassed the consideration of two **feature selection techniques**: SBS and PCA.

The findings relative to the **SVM grid search** indicate that **PCA**, yields superior and more stable results. Then, a quantum model was tested in a **real quantum computer**, and it was found that the simulated, real device and SVM results are **compatible**.

FUTURE WORK

Exploring other **architectures** for the VQC to enhance its overall performance.

A comprehensive grid search encompassing SVM-specific parameters and learning rates for the VQC should be conducted, considering the **entire set of features and datapoints**.

