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INTRODUCTION
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SM AND BSM

Standard Model of Particle Physics (SM)

The Standard Model of Particle Physics (SM) has been highly successful
in describing the fundamental constituents of matter and their
interactions, as evidenced by its agreement with collider data.

Physics Beyond the Standard Model (BSM)

Nevertheless, crucial questions persist, such as gravity, dark matter,
dark energy, and matter-antimatter asymmetry in the universe,
motivating the search for new physics beyond the SM at the Large
Hadron Collider at CERN.
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QML IN THE CONTEXT OF BSM SEARCH

The exploration of BSM
phenomena at colliders presents
challenges due to vast datasets
and low signal-to-background
ratios.

To tackle this ML techniques,
particularly for classification tasks,
have been employed, revealing their
remarkable ability to identify
correlations in high-dimensional
parameter spaces.
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PROJECT DEVELOPED

A systematic comparison is made between the
performance of Quantum Machine Learning (QML)
and shallow Classical Machine Learning (CML).

The primary focus is on binary classification tasks,
specifically distinguishing between BSM signals
and SM background.

The investigation involves the utilization of VQCs,
while also exploring the potential of reduced data
through feature reduction techniques.
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VARIATIONAL QUANTUM 
CLASSIER
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VARIATIONAL QUANTUM CLASSIFIER (VQC)

Angle 
Embedding

Ansatz Final
Prediction

Classical
Optimization

Fig 1: Variational Quantum Classifier (VQC) structure
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DATA EMBEDDING

Angle 
Embedding

No of qubits

Angle 

Embedding

Corresponds to the number of 
features.

Each feature is encoded as an
angle.

Data 
Embedding

Consists of encoding the
classical data into a quantum
state | ۧψ

𝑋

.
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ANSATZ

Ansatz

U (w)

Corresponds to a parameterized quantum 
circuit.

Model circuit. Is applied to the quantum
state embedded with classical
information resulting in the final state
| ۧψ′

𝑋

= 𝑈 𝑤 | ۧψ
𝑋

. 

Ansatz

w Learning model parameters.
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ANSATZ
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FINAL PREDICTION

Final
Prediction

Final prediction

Global 

Measuremt

An observable measurement is performed on one of the
qubits in the final state, which provides the model's
prediction for the binary classification task.

With global measuments the gradient of the cost
function exponentially diminishes as the system size
increase.

Local 

Measuremt
Employing local observables leads to, at worst, a
polynomially vanishing gradient.
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CLASSICAL OPTIMIZATION

Cost Function

Serves as a quantitative measure of the
discrepancy between the output state
generated by the VQC and the desired
target state.

Classical 
optimization 

Corresponds to the use of a classical
optimizer to identify the optimal w.

Classical
Optimization
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VQC: EXAMPLE

Fig 2: An example circuit for the VQC architecture used. It is comprised of 2 layers and 3 features.
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IMPLEMENTATION DETAILS

The training commences by initializing the
weight vector randomly. 1

It undergoes multiple training iterations until
reaching the maximum specified epochs or
until the validation AUC score stabilizes.

2
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IMPLEMENTATION DETAILS

The condition for stability was defined as not
achieving a superior AUC score in 20 epochs. 3

In each iteration, the model is applied to the
training dataset, computing the cost function,
and then updating the model parameters using
the Adam optimizer.

4

15



CHARACTERISTICS OF THE SIMULATION

The quantum machine learning
experiments were simulated in
PennyLane.

The quantum model's performance
was evaluated on a real quantum
computer using PennyLane's
integration with IBM's quantum
computing framework Qiskit.
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SUPORT VECTOR MACHINE
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SUPORT VECTOR MACHINES (SVM)

SVM
Is trained to separate two classes of data
in the feature hyperspace by finding the
hyperplane that best separates them.

Why SVM? Ensures a fair comparison.
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FEATURE SELECTION 
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FEATURE SELECTION 

47 features 47 qubits
The quantum computer 

used only has 5 qubits

It is necessary to select the 
5 best features

Study feature selection 
methods
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SEQUENTIAL FEATURE SELECTION (SFS)

Feature AUC Score

𝐸𝑡 0.817

large R-jet 𝜏1 0.576

large R-jet 𝜏3 0.316

Jet2 pt 0.313

Jet1 pt 0.292

Table 1: Features selected by the SBS Algorithm and their 

respective AUC Score on the training dataset.

Description
Initiates with the complete feature set and
iteratively removes one feature at a time
based one their AUC score.

Objective Identify the most relevant features.

21



PRINCIPAL COMPONENT ANALYSIS (PCA)

Component AUC Score

Component 1 0.775146

Component 3 0.715941

Component 0 0.687727

Component 14 0.630145

Component 36 0.605685

Table 2: Features selected by the SBS Algorithm and their 

respective AUC Score on the training dataset.

Objective
Eliminate feature correlations while
preserving the original data's
dimensionality.
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FINDING THE OPTIMAL MODELS

23



GRIDSEARCH: SVM

Fig 3: Plot grid representing the results for the SVM grid search. Each data point

represents the AUC score on the test dataset of a different set of HP.
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GRIDSEARCH: SVM

The performance achieved with 3, 4, and 5
components/features is compatible.

The highest AUC score is attained with PCA
for 5 components and 4000 datapoints.

In general, PCA outperforms SBS. 

PCA generates more stable results. 
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GRIDSEARCH:VQC

The VQC grid search is still running and therefore it is not
possible to present the results yet.
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REAL COMPUTER
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REAL COMPUTER RESULTS (IBMQ_BELEM)

Fig 4: Comparison of the performance achieved with

SVM, VQC in simulation, VQC in a real device

(ibmq_belem), and VQC in simulation with quantum

noise from ibmq_belem .

Fig 5: Variability of the ROC curve obtained for the SVM, VQC in simulation, VQC in a real

device (ibmq_belem), and VQC in simulation with quantum noise from ibmq_belem.
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REAL COMPUTER RESULTS

SVM and VQC results are compatible.

The ensemble method results are, in
general, slightly better than the mean of
the results of the 5 samples.

Regarding the VQC, simulation and real 
device results are compatible.
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CONCLUSION

The primary purpose of this study
is to explore the utilization of QML
on datasets pertaining to HEP.

Initially, a grid search was
conducted to identify the optimal
models, which encompassed the
consideration of two feature
selection techniques: SBS and PCA.

The findings relative to the SVM
grid search indicate that PCA,
yields superior and more stable
results.

Then, a quantum model was tested
in a real quantum computer, and it
was found that the simulated, real
device and SVM results are
compatible.
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FUTURE WORK
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Exploring other architectures for
the VQC to enhance its overall
performance.

A comprehensive grid search
encompassing SVM-specific
parameters and learning rates for the
VQC should be conducted,
considering the entire set of features
and datapoints.



THE END
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