

Dosimetry Linking biological effects with physical quantities

Jorge Miguel Sampaio

What is Dosimetry?

Calculation and **measurement** of the **absorbed dose** by an object (the human body!) exposed to **ionising radiation** and the evaluation of its **biological impact** on the organ and tissues.

Radiation Sources

Radiation effects on us

Cellular damage mechanisms

Factors that influence cellular radiosensitivity

Absorbed dose

Energy imparted

Related to the fraction of energy kinetic energy that is **imparted** in the volume

$$\bar{\epsilon} = R_{\rm in} - R_{\rm ou}$$

Absorbed dose

$$D = \lim_{m \to 0} \left(\frac{\bar{\epsilon}}{m}\right) = \frac{d\bar{\epsilon}}{dm}$$

SI unit: Gy (gray)

Dose is defined in a **point** as an average value of stochastic processes e a (small) volume

Stopping power

Energy lost

Accounts for all energy **lost** by a single particle inside de volume

$$\Delta E = E_{\rm ou} - E_{in}$$

Stopping power

$$S = \lim_{\Delta x \to 0} -\left(\frac{\Delta E}{\Delta x}\right) = -\frac{dE}{dx}$$

Unit: $keV/\mu m$ or MeV/cm

Linear energy transfer

Energy transferred

Accounts for all energy **transferred** by a single particle inside de volume

$$\Delta E_{tr} = (E_{\rm ou} - \Delta) - E_{in}$$

Energy that is deposited outside the volume

LET

$$L = \lim_{\Delta x \to 0} -\left(\frac{\Delta E_{tr}}{\Delta x}\right) = -\frac{dE_{tr}}{dx}$$

Unit: $keV/\mu m$ or MeV/cm

LET and the cell damage

Low-LET: Low density of ionisations and scattered

High-LET: High ionisation density and very localised

Immunofluorescence image of γ -H2AX foci on human lymphocytes cell nucleus

Low-LET: *γ*-rays

High-LET: 0.88 MeV protons (28 keV/ μ m)

M. Moganato et al. The DNA-Damage Response to Ionizing Radiation in Human Lymphocytes (2011)

Clonogenic assay: the gold standard of radiobiology

Plating effciency

 $PE = \frac{\# \text{ of colonies formed } @ D = 0}{\# \text{ of cells plated}}$

Survival fraction

 $SF = \frac{\# \text{ of colonies formed } @ D \neq 0}{\# \text{ of colonies formed } @ D = 0}$ $= \frac{\# \text{ of colonies formed } @ D \neq 0}{\# \text{ of cells plated} \times PE}$

E. J. Hall and A. J. Giaccia, Radiobiology for the Radiologist (2012)

SF dose response: LET dependence

Low-LET: Linear Quadratic Model (LQM)

$$SF_{\rm LQM} = e^{-\alpha D - \beta D^2}$$

High-LET: Linear Model (LM)

$$SF_{\rm LM} = e^{-\alpha D}$$

Radiosensitivity increases with LET

Relative Biological Effictiviness (RBE)

J. M. Søbstad, Monte Carlo based comparison of constant vs. variable RBE for proton therapy patients (2017).

SF dose response: Oxygen enhancement effect

Lower LET:

Hypoxic: lower biological effectiveness (tumour cells)

Oxygenated: higher biological effectiveness (normal cells)

Higher LET: independent of oxygen conditions

Radiosensitivity increases with oxygen concentration

E. J. Hall and A. J. Giaccia, Radiobiology for the Radiologist (2012)

SF dose response: Cell cycle

Radiosensitivity increases during the mitotic phase (G2-M-G1).

SF dose response: Dose rate effect

In general, radiosensitivity increases with dose rate, but...

Inverse dose rate effect

G₁

The need for micro- and nanodosimetry

Example: 62 MeV proton beam measurements

value.

Microdosimeters

Rossi TEPC (1960)

A. T. Samnøy et al. Rad. Phys. Chem. 176 (2020)

scCVD Diamond µD

Mini-TEPC

A. Bianchi et al. Rad. Phys. Chem. 202 (2023)

Radiation Dosimetry to Advance RadioTherapy (RADART)

Group thematic lines

- Detectors and materials for high-res. dosimetry
- New modalities and applications in RT

Projects and collaborations

Detectors and materials for dosimetry

- Scintillating optical fibre array for high-res. dosimetry
- Development of materials for micro and nanodosimetry

New modalities and applications in RT

- Modelling radiobiological effects of NPs
- Advance charged-particle MBRT
- Advance FLASH-RT
- Effects of PT in NDDs

Detectors and materials for high-res. dosimetry

SPOF array for high-res. detector

- Construction and testing
- Cell growth on the detector surface
- Radiobiology experiments

Micrometer fibres

FNTD for nanodosimetry

M. Niklas et al. Radiat. Oncol 8 (2013)

New modalities and applications in RT

- Increase production of secondary particles
- Increase production of ROS

Enhnancement of the therapeutic effect

Modelling radiobiological effects of NPs

- Monte Carlo simulations (TOPAS nBio)
- Radiobiological models
- Compare with experimental data

New modalities and applications in RT

Effects of low-dose (< 0.1 Gy) in neurodegenerative disorders (NDDs)

- Irradiation of brain cells with different types of radiation
- Assess the production of ROS
- Effects on the destruction of protein aggregates (amyloid Silvia Viñals 50, Daniel Galaviz 1.60 and Federico Herrera 2.7.80
- Model based on Monte Carlo simulations (TOPAS nBio)

NDD are associated with increased

protein aggregations (amyloidosis)

New modalities and applications in RT

Advance charged particle MRT

- Obtain calibration factors for MBRT dosimetry (TOPAS)
- Simulation of MBRT treatment plans from CT images (TOPAS)
- Fast GPU-based MC simulation (MOQUI)

- High peak-to-dose ratio (PVDR) in healthy tissues
- Homogeneous distribution at the Bragg peak

Sparing effect on healthy tissues

Thanks for your attention!