SIMULATION WITH TOPAS PRACTICAL WORKSHOP

LIP Internship Program 2023 - Lectures and Tutorials Week

JOANA ANTUNES jantunes@lip.pt

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

July 6, 2023

TOol for PArticle Simulation

- A Geant4-based Monte Carlo simulation.
- Easy-to-use:
 - The simulation is controlled by a parameter file.
 - It is possible assemble and control a rich library of simulation objects (geometry components, particle sources, scorers, etc.) with no need to write C++ code.
- Focus on medical applications.
- The users can implement their own simulation objects in C++ code and add them to TOPAS via an extension mechanism.
- Userguide: <u>https://topas.readthedocs.io/en/latest/index.html</u>

TOPAS Parameter files

# Water Box with 10 ³	*10*40 cm3
s:Ge/MyBox/Type	= "TsBox"
<pre>s:Ge/MyBox/Material</pre>	= "G4_WATER"
s:Ge/MyBox/Parent	= "World"
d:Ge/MyBox/HLX	= 5 cm
d:Ge/MyBox/HLY	= 5 cm
d:Ge/MyBox/HLZ	= 20 cm

Parameters files are simple text files made up of lines of key/value pairs.

The order of lines within a parameter file does not matter.

```
Parameter_Type : Parameter_Name = Parameter_Value #Optional comment
```

Tells TOPAS what **<u>type</u> of** <u>data</u> will be in this parameter:

d for Dimensioned Double

u for Unitless Double

i for Integer

b for Boolean

s for String

 ${\rm d} {\rm v}$ for Dimensioned Double Vector

similarly, for uv, iv, bv and sv

Can be almost any string, but there are **prefix** conventions to keep things clear:

Ma/ for Materials
El/ for Elements
Is/ for Isotopes
Ge/ for Geometry Components
So/ for Particle Sources
Ph/ for Physics

Parameter names are not case sensitive.

Vr/ for Variance Reduction
Sc/ for Scoring
Gr/ for Graphics
Tf/ for Time Features
Ts/ for TOPAS overall control

NTERNSHIP ROG RAM COM LOGAL MINO

3

TOPAS Parameter files

- d:Ge/Phantom/HLX
- i:Sc/DoseScorer/ZBins
- **b**:Sc/DoseScorer/Active
- s:Ge/Phantom/Material
- iv:Gr/Color/yellow bv:Tf/ScoringOnOff/Values sv:Ma/MyPlastic/Components

- # Dimensioned Double = 10. cm = 100 # Integer
- = "True" # Boolean
- = "G4 WATER" # String
- # Dimensioned Double Vector dv:Ge/RMW Track1/Angles = 4 69.1 92.2 111.0 126.0 deg # Unitless Double Vector uv:Ma/Phantom_Plastic/Fractions = 3 0.05549 0.75575 0.18875 # Integer Vector = 3 225 255 0 = 4 "true" "false" "true" "false" # Boolean Vector
 - = 3 "Hydrogen" "Carbon" "Oxygen" # String Vector

Relative Parameters

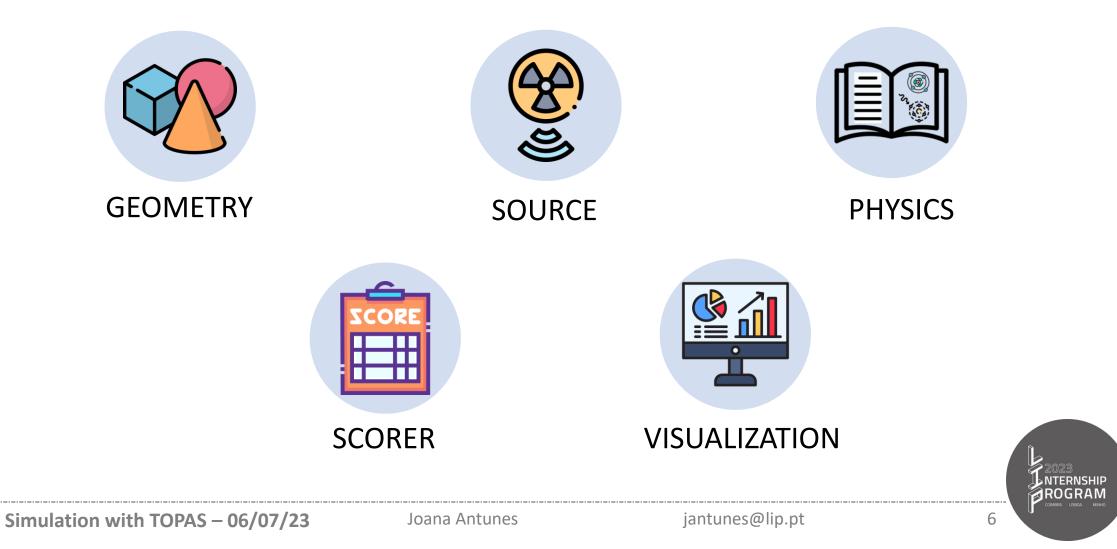
• TOPAS supports "relative parameters", wherein one parameter may be set relative to another:

s:Ge/Phantom/Material = SomeOtherParameterName

• With relative dimensioned double parameters, we must insist that a unit be included on the right side of the expression:

d:Ge/Phantom/HLX = SomeOtherParameterName cm

• TOPAS has a grammar for operations such as adding or multiplying parameters:


d:Ge/Compensator/TransZ = Ge/Aperture/DistalEdge + Ge/Compensator/HLZ mm

Note that there must be a space before and after the plus sign.

The complete set of allowed syntax for any one parameter line is shown here.

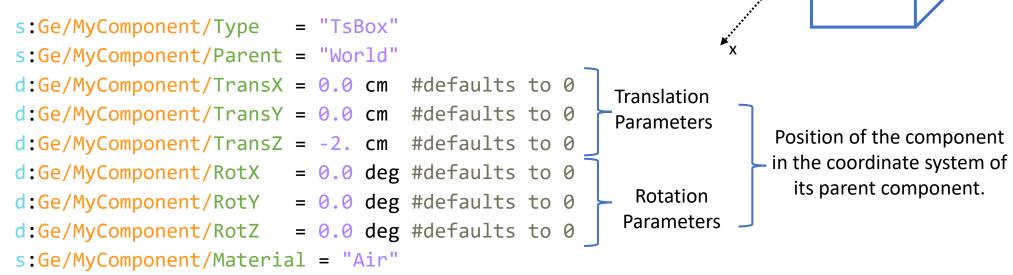
TOPAS Parameter files

Geometry Components

TOPAS includes all the standard Geant4 solids

TsSphere, TsBox, TsCylinder, G4CutTubs, G4Cons, G4Para, ...

• Each one of them has its own set of required parameters:


TsBox	TsSphere	TsCylinder	
HLX, HLY and HLZ*	RMin, RMax, DPhi and SPhi	HL, RMin, RMax, DPhi and SPhi	
All parameters, including optional ones, for all the Geant4 solids, can be found in this example.			
* Half length			

- It is possible built some complex things just from combinations of the Generic Components.
- TOPAS also has more specialized Components as a Range Modulator Wheel and a Multi Leaf Collimator.
 Usage is best learned by studying the relevant examples parameter files included in TOPAS.

Geometry Components

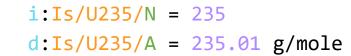
• All Geometry Components must have at least the following parameters:

When building geometry, activate overlap checking. It has a speed cost at initialization, so if you're confident there are no overlaps, you can turn it off. b:Ge/CheckForOverlaps = "False"

Ζ

8

Materials and Isotopes


- Pre-defined materials: Vacuum, Nickel, Aluminum, ... (list in <u>here</u>)
- You are free to define additional materials:

```
sv:Ma/Air/Components = 4 "Carbon" "Nitrogen" "Oxygen" "Argon" #names of elements
uv:Ma/Air/Fractions = 4 0.000124 0.755268 0.231781 0.012827 #fractions of elements
d:Ma/Air/Density = 1.2048 mg/cm3
d:Ma/Air/MeanExcitationEnergy = 85.7 eV
```

You can also create a new mixture from a combination of other materials.

```
b:Ma/MyMixture/BuildFromMaterials = "True"
sv:Ma/MyMixture/Components = 2 "G4_WATER" "Air"
uv:Ma/MyMixture/Fractions = 2 .5 .5
d:Ma/MyMixture/Density = .5 g/cm3
```

• To define an isotope you must specifying Z, N and A: i:Is/U235/Z = 92

Particle Sources

• Different types of particle sources, each with many options:

s:So/MySource/Type = "Beam" #Beam, Isotropic, Distributed, Volumetric or PhaseSpace

- The source position can be defined by the user, and it must be associated with a geometry component.
 s:So/MySource/Component = "BeamPosition"
- Particle names can take the following forms (case does not matter):

s:So/MySource/BeamParticle = "proton"

- A simple string such as "proton", "e-", "gamma", "He3";
- A string describing an ion with arguments Z, A, and optionally Charge, such as: "Genericlon(6,12,6)";
- An integer PDG ID code;

10

Particle Sources

Beam Source

• You must define the beam energy and spread:

d:So/MySource/BeamEnergy = 169.23 MeV
u:So/MySource/BeamEnergySpread = 0.757504

• You can provide an energy spectrum instead of a fixed energy, by defining the energies and weights:

s:So/MySource/BeamEnergySpectrumType = "Continuous" # or "Discrete"
dv:So/MySource/BeamEnergySpectrumValues = 3 50. 100. 150. MeV
uv:So/MySource/BeamEnergySpectrumWeights = 3 .20 .60 .20

- The beam shape can be further described by a set of parameters that control the position distribution of the start of the beam and by a set of parameters that control how the beam spreads out from that start position.
- To define how many particles are generated, you must do: i:So/MySource/NumberOfHistoriesInRun = 100

Distribution, CutoffX, CutoffY, SpreadX and SpreadY BeamPosition

Distribution, CutoffShape, CutoffX, CutoffZ, SpreadX and SpreadY

11

jantunes@lip.pt

Particle Sources

Isotropic, Distributed and Volumetric Sources

- **Isotropic** sources emit particles uniformly from the center of the specified component.
- Distributed source represents radioactive material randomly distributed within other material.
 s:So/MySource/Component = "DemoSphere"
 i:So/MySource/NumberOfHistoriesInRun = 5
 i:So/MySource/NumberOfSourcePoints = 4
- Volumetric source emit particles from randomly sampled starting positions from within the radioactive volume of a given component. This source type has been designed for Brachytherapy applications.

```
s:So/MySource/Type = "Volumetric"
s:So/MySource/Component = "ActiveSource"
s:So/MySource/ActiveMaterial = "G4 Ir"
```

The energies and species of the emitted particles can be specified using the usual parameters as BeamParticle, BeamEnergy and BeamEnergySpread.

12

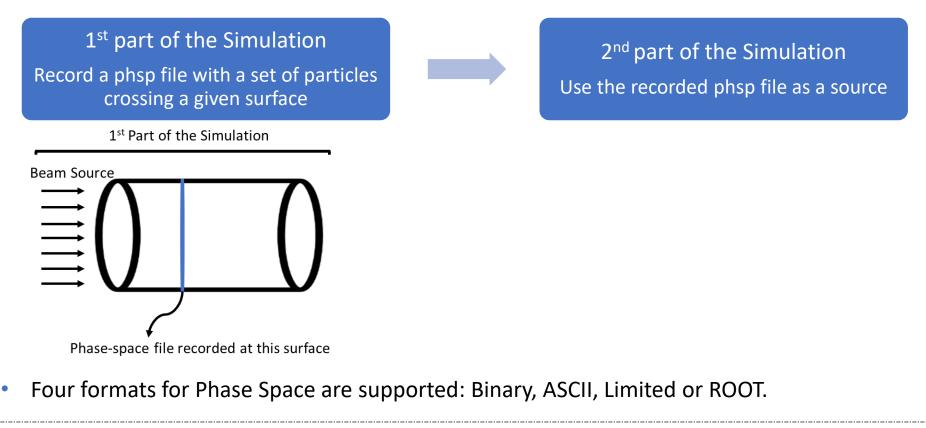
Scorers

• There are two basic classes of scorers: Volume and Surface Scorers

You must indicate the relevant Component s:Sc/MyScorer/Component = "Phantom"

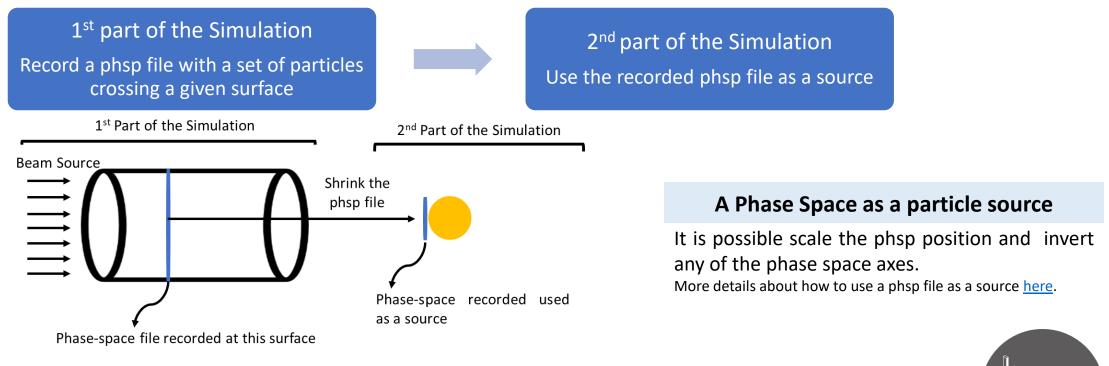
Quantity		
DoseToMedium	EnergyFluence	
DoseToWater	StepCount	
DoseToMaterial	OpticalPhotonCount	
TrackLengthEstimator	OriginCount	
AmbientDoseEquivalent	Charge	
EnergyDeposit	EffectiveCharge	
Fluence	ProtonLET	

You must indicate the relevant Component and Surface name


s:Sc/MyScorer/Surface="Phantom/ZMinusSurface"

Quantity		
SurfaceTrackCount	SurfaceCurrent	
PhaseSpace		

Phase Space


 This type of scorer enables separating two parts of a simulation and can be used to transfer sets of particles among different codes.

Phase Space

 This type of scorer enables separating two parts of a simulation and can be used to transfer sets of particles among different codes.

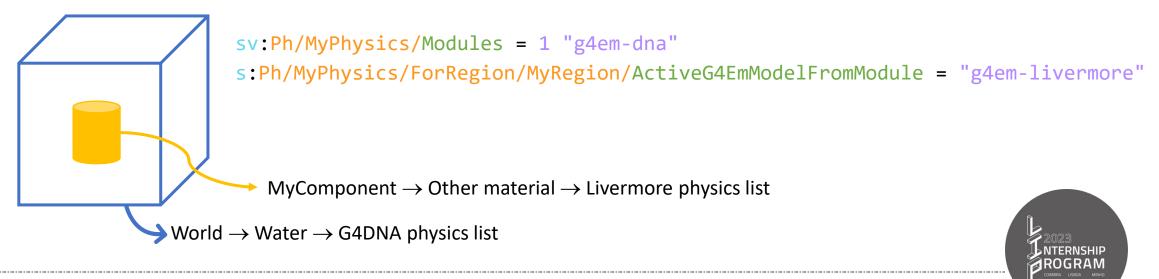
• Four formats for Phase Space are supported: Binary, ASCII, Limited or ROOT

jantunes@lip.pt

14

Physics

- A physics list specifies what particles and physics processes are defined, plus various cuts and options.
- You can choose from two general types of physics lists:
 - Reference Physics Lists are pre-made, complete lists provided by Geant4.
 - Modular Physics Lists are lists where you mix and match a set of modules to create a customized complete list.


```
TOPAS Module Name
                                                                                        Geant4 Class Name
  sv:Ph/MyPhysics/Modules = 1 "g4em-livermore"
                                                                g4em-livermore
                                                                                       G4EmLivermorePhysics
  d:Ph/MyPhysics/CutForAllParticles = 0.05 mm
  b:Ph/MyPhysics/Fluorescence = "True"
                                                                g4em-penelope
                                                                                        G4EmPenelopePhysics
  b:Ph/MyPhysics/Auger = "True"
                                                               g4radioactivedecay
                                                                                     G4RadioactiveDecayPhysics
  b:Ph/MyPhysics/AugerCascade = "True"
                                                                  g4em-dna*
                                                                                          G4EmDNAPhysics
  b:Ph/MyPhysics/PIXE = "True"
                                                           List of Available Modules
                                                                               *Only for water
                                                                                Goes down to 10. eV
Simulation with TOPAS – 06/07/23
                                       Joana Antunes
                                                                  jantunes@lip.pt
                                                                                                15
```

Physics

- By default, cuts affect the entire world, but you can optionally divide the world into several regions and can specify different physics modules and cuts in each region.
- First, specify which components belong to a given region:

```
s:Ge/MyComponent/AssignToRegionNamed = "MyRegion"
```

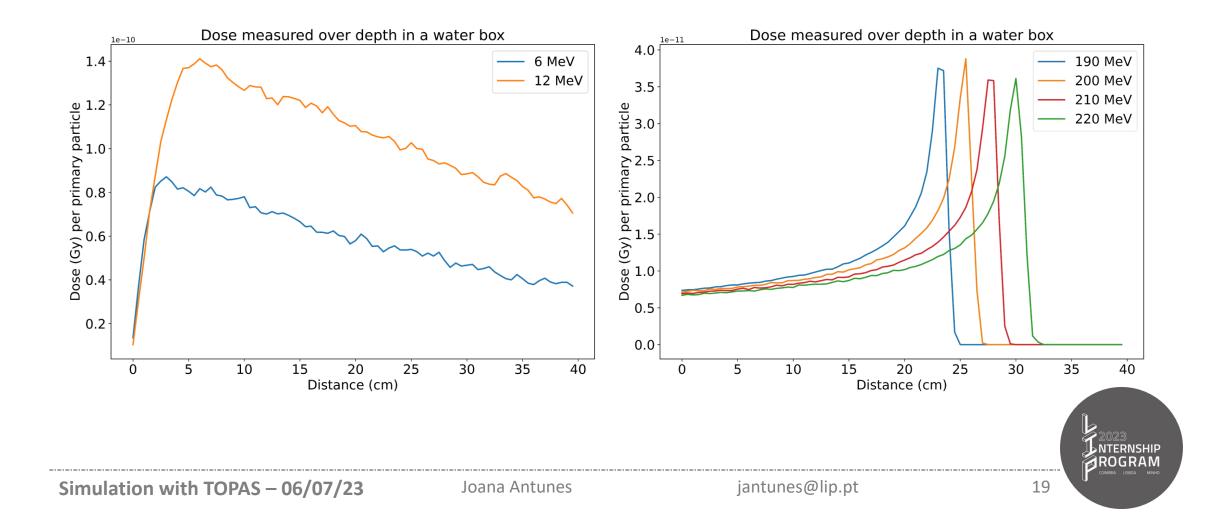
• Then assign cuts and physics modules per region by including the region name in the parameter name as in:

References

Perl J, Shin J, Schumann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012; 39(11):6818-37.

Faddegon B, Ramos-Mendez J, Schuemann J, McNamara A, Shin J, Perl J, Paganetti H, The TOPAS Tool for Particle Simulation, a Monte Carlo Simulation Tool for Physics, Biology and Clinical Research, Physica Medica, doi:10.1016/j.ejmp.2020.03.019

Questions?


Hands-on session

Example 1 – Dose measured over depth in a water box

Example 2 – Radial Dose: Deposited dose as a function of the distance from the AuNP surface.

Example 1 Dose measured over depth in a water box

Example 1

Dose measured over depth in a water box

- Geometry: Water Box (10*10*40 cm3)
- Physics: g4-livermore
 - Cut for gammas and electrons: 5 μm
 - Fluorescence, Auger, Auger Cascade, Deexcitation Ignore Cut and PIXE activated.
- Scorer: DoseToMedium
 - Output file name: Dose_###MeV
 - You must indicate how many Zbins do you want
- Source:
 - The source beam direction was chosen to irradiate the box along the z-axis. Particle tracks were originated from a gaussian, and elliptical plane placed at the box begin.
 - Protons: 190, 200, 210 and 220 MeV; 100 histories
 - Gammas: 6 and 12 MeV; 50000 histories
- Results analysis:
 - Example1_Plots.py: Example1_gammas.png and Example1_protons.png

Example 1 Dose measured over depth in a water box

• **Geometry**: Water Box

Simulation with TOPAS – 06/07/23

Example 1 Dose measured over depth in a water box

Geometry: Water Box

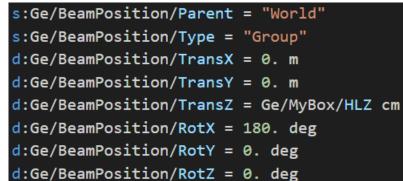
Physics

- Cut for gammas and electrons: 5 µm
- Fluorescence, Auger, Auger Cascade. Deexcitation Ignore Cut and PIXE activated.

s:Ph/ListName	= "MyPhysics"
<pre>sv:Ph/MyPhysics/Modules</pre>	= 1 "g4em-livermore"
s:Ph/MyPhysics/Type	= "Geant4_Modular"
d:Ph/MyPhysics/SetProduction	nCutLowerEdge = 100 eV
d:Ph/MyPhysics/CutForGamma	= 5 um
d:Ph/MyPhysics/CutForElectro	on = 5 um
b:Ph/MyPhysics/Fluorescence	= "True"
b:Ph/MyPhysics/Auger	= "True"
b:Ph/MyPhysics/AugerCascade	= "True"
b:Ph/MyPhysics/Deexcitation]	[gnoreCut = "True"
b:Ph/MyPhysics/PIXE	= "True"

21

У


30 cm x

Example 1

Dose measured over depth in a water box

Source:

- The source beam direction was chosen to irradiate the box along the z-axis. Particle tracks were originated from a gaussian, and elliptical plane placed at the box begin.
- Protons: 190, 200, 210 and 220 MeV; 100 histories
- Gammas: 6 and 12 MeV; 50000 histories •

jantunes@lip.pt

Simulation with TOPAS – 06/07/23

s:Sc/DoseAtPhantom/Quantity = "DoseToMedium" s:Sc/DoseAtPhantom/Component = "MyBox" s:Sc/DoseAtPhantom/IfOutputFileAlreadyExists = "Overwrite"

b:Sc/DoseAtPhantom/OutputToConsole = "False"

You must indicate how many Zbins do you want

i:Sc/DoseAtPhantom/ZBins = 80

Output file name: Dose ###MeV

s:Sc/DoseAtPhantom/OutputFile = "Dose 190MeV" # Rotate Phantom so that the bin numbered 0 will be the # first bin hit.

d:Ge/MyBox/RotX = 180. deg

Results analysis:

Example1 Plots.py: Example1 gammas.png and Example1 protons.png

30 cm

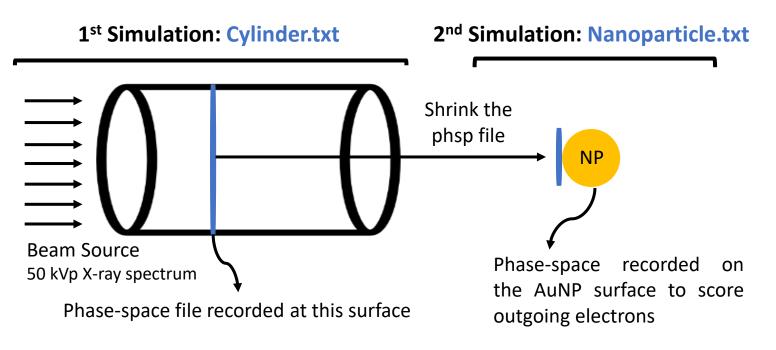
Example 1

Scorer: DoseToMedium

Dose measured over depth in a water box

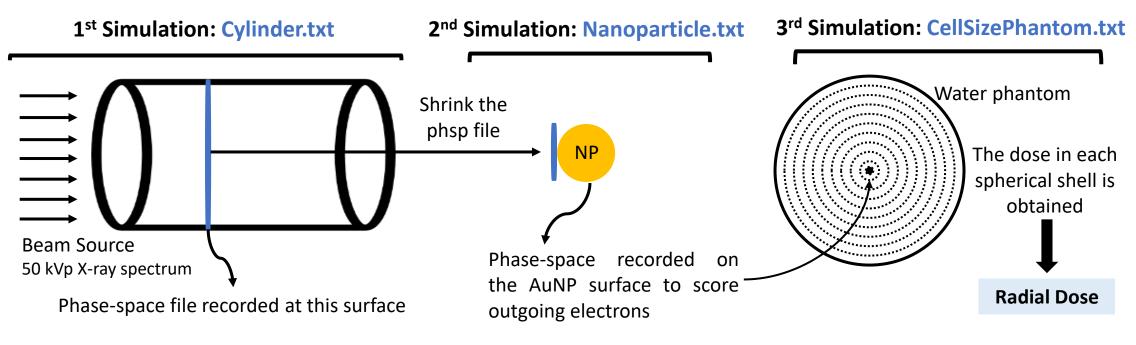
Example 2 Radial Dose

1st Simulation: Cylinder.txt


Beam Source 50 kVp X-ray spectrum	5

Phase-space file recorded at this surface

- Physics: g4-Livermore or g4-dna
 - Cut for gammas and electrons: 1 nm
 - Fluorescence, Auger, Auger Cascade, Deexcitation Ignore Cut and PIXE activated.


Example 2 Radial Dose

- **Physics**: g4-livermore
 - Cut for gammas and electrons: 1 nm
 - Fluorescence, Auger, Auger Cascade, Deexcitation Ignore Cut and PIXE activated.

Example 2 Radial Dose

- Physics: g4-dna
 - Cut for gammas and electrons: 0.5 nm
 - Fluorescence, Auger, Auger Cascade, Deexcitation Ignore Cut and PIXE activated.
- Scorer: DoseToMedium

Simulation with TOPAS – 06/07/23

jantunes@lip.pt

24

OGRAM